Displaying all 5 publications

Abstract:
Sort:
  1. Ibrahim MF, Razak MN, Phang LY, Hassan MA, Abd-Aziz S
    Appl Biochem Biotechnol, 2013 Jul;170(6):1320-35.
    PMID: 23666614 DOI: 10.1007/s12010-013-0275-2
    Cellulase is an enzyme that converts the polymer structure of polysaccharides into fermentable sugars. The high market demand for this enzyme together with the variety of applications in the industry has brought the research on cellulase into focus. In this study, crude cellulase was produced from oil palm empty fruit bunch (OPEFB) pretreated with 2% NaOH with autoclave, which was composed of 59.7% cellulose, 21.6% hemicellulose, and 12.3% lignin using Trichoderma asperellum UPM1 and Aspergillus fumigatus UPM2. Approximately 0.8 U/ml of FPase, 24.7 U/ml of CMCase and 5.0 U/ml of β-glucosidase were produced by T. asperellum UPM1 at a temperature of 35 °C and at an initial pH of 7.0. A 1.7 U/ml of FPase, 24.2 U/ml of CMCase, and 1.1 U/ml of β-glucosidase were produced by A. fumigatus UPM2 at a temperature of 45 °C and at initial pH of 6.0. The crude cellulase was best produced at 1% of substrate concentration for both T. asperellum UPM1 and A. fumigatus UPM2. The hydrolysis percentage of pretreated OPEFB using 5% of crude cellulase concentration from T. asperellum UPM1 and A. fumigatus UPM2 were 3.33% and 19.11%, with the reducing sugars concentration of 1.47 and 8.63 g/l, respectively.
    Matched MeSH terms: Cellulase/biosynthesis*
  2. Alam MZ, Muyibi SA, Wahid R
    Bioresour Technol, 2008 Jul;99(11):4709-16.
    PMID: 17981027
    A two-level fractional factorial design (FFD) was used to determine the effects of six factors, i.e. substrate (domestic wastewater sludge - DWS) and co-substrate concentration (wheat flour - WF), temperature, initial pH, inoculum size and agitation rate on the production of cellulase enzyme by Trichoderma harzianum in liquid state bioconversion. On statistical analysis of the results from the experimental studies, optimum process conditions were found to be temperature 32.5 degrees C, substrate concentration (DWS) 0.75% (w/w), co-substrate (WF) concentration 2% (w/w), initial pH 5, inoculum size 2% (v/w) and agitation 175 rpm. Analysis of variance (ANOVA) showed a high coefficient of determination (R2) of 0.975. Cellulase activity reached 10.2 FPU/ml at day 3 during the fermentation process which indicated about 1.5-fold increase in production compared to the cellulase activity obtained from the results of design of experiment (6.9 FPU/ml). Biodegradation of DWS was also evaluated to verify the efficiency of the bioconversion process as a waste management method.
    Matched MeSH terms: Cellulase/biosynthesis*
  3. Yoon LW, Ngoh GC, Chua AS
    Enzyme Microb Technol, 2013 Sep 10;53(4):250-6.
    PMID: 23931690 DOI: 10.1016/j.enzmictec.2013.05.005
    This study examined the potential of untreated and alkali-pretreated sugarcane bagasse (SCB) in cellulase, reducing sugar (RS) and fungal biomass production via solid state fermentation (SSF) using Pycnoporus sanguineus. The impact of the composition, structure and cellulase adsorption ability of SCB on the production of cellulase, RS and fungal biomass was investigated. From the morphological and compositional analyses, untreated SCB has relatively more structural changes with a higher percentage of depolymerisation on the cellulose, hemicellulose and lignin content compared to alkali-pretreated SCB. Thus, untreated SCB favoured the production of cellulase and fungal biomass whereas alkali-pretreated SCB yielded a higher amount of RS. The composition and morphology of untreated SCB did not encourage RS production and this suggested that RS produced during SSF might be consumed in a faster rate by the more abundantly grown fungus. Besides that, alkali-pretreated SCB with higher cellulase adsorption ability could have adsorbed the cellulase produced and resulted in a lower cellulase titre. In short, the production of specific bioproducts via SSF is dependent on the structure and composition of the substrate applied.
    Matched MeSH terms: Cellulase/biosynthesis*
  4. Kazeem MO, Shah UKM, Baharuddin AS, AbdulRahman NA
    Appl Biochem Biotechnol, 2017 Aug;182(4):1318-1340.
    PMID: 28176140 DOI: 10.1007/s12010-017-2401-z
    Bacteria isolated from thermophilic environment that can produce cellulase as well as utilise agro-waste biomass have a high potential for developing thermostable cellulase required in the biofuel industry. The cost for cellulase represents a significant challenge in converting lignocellulose to fermentable sugars for biofuel production. Among three potential bacteria examined, Bacillus licheniformis 2D55 (accession no. KT799651) was found to produce the highest cellulolytic activity (CMCase 0.33 U/mL and FPase 0.09 U/mL) at 18-24 h fermentation when grown on microcrystalline cellulose (MCC) as a carbon source in shake flask at 50 °C. Cellulase production process was further conducted on the untreated and NaOH pretreated rice straw (RS), rice husk (RH), sugarcane bagasse (BAG) and empty fruit bunch (EFB). Untreated BAG produced the highest FPase (0.160 U/mL), while the highest CMCase (0.150 U/mL) was supported on the pretreated RH. The mixture of untreated BAG and pretreated RH as agro-waste cocktail has remarkably improved CMCase (3.7- and 1.4-fold) and FPase (2.5- and 11.5-fold) compared to the untreated BAG and pretreated RH, respectively. The mechanism of cellulase production explored through SEM analysis and the location of cellulase enzymes of the isolate was also presented. Agro-waste cocktail supplementation provides an alternative method for an efficient production of cellulase.
    Matched MeSH terms: Cellulase/biosynthesis*
  5. Tai WY, Tan JS, Lim V, Lee CK
    Biotechnol Prog, 2019 05;35(3):e2781.
    PMID: 30701709 DOI: 10.1002/btpr.2781
    The high cost of cellulases remains the most significant barrier to the economical production of bio-ethanol from lignocellulosic biomass. The goal of this study was to optimize cellulases and xylanase production by a local indigenous fungus strain (Aspergillus niger DWA8) using agricultural waste (oil palm frond [OPF]) as substrate. The enzyme production profile before optimization indicated that the highest carboxymethyl cellulose (CMCase), filter paper (FPase), and xylanase activities of 1.06 U/g, 2.55 U/g, and 2.93 U/g were obtained on day 5, day 4, and day 5 of fermentation, respectively. Response surface methodology was used to study the effects of several key process parameters in order to optimize cellulase production. Of the five physical and two chemical factors tested, only moisture content of 75% (w/w) and substrate amount of 2.5 g had statistically significant effect on enzymes production. Under optimized conditions of 2.5 g of substrate, 75% (w/w) moisture content, initial medium of pH 4.5, 1 × 106 spores/mL of inoculum, and incubation at ambient temperature (±30°C) without additional carbon and nitrogen, the highest CMCase, FPase, and xylanase activities obtained were 2.38 U/g, 2.47 U/g, and 5.23 U/g, respectively. Thus, the optimization process increased CMCase and xylanase production by 124.5 and 78.5%, respectively. Moreover, A. niger DWA8 produced reasonably good cellulase and xylanase titers using OPF as the substrate when compared with previous researcher finding. The enzymes produced by this process could be further use to hydrolyze biomass to generate reducing sugars, which are the feedstock for bioethanol production.
    Matched MeSH terms: Cellulase/biosynthesis*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links