Choline kinase beta (CKβ) is one of the CK isozymes involved in the biosynthesis of phosphatidylcholine. CKβ is important for normal mitochondrial function and muscle development as the lack of the ckβ gene in human and mice results in the development of muscular dystrophy. In contrast, CKα is implicated in tumorigenesis and has been extensively studied as an anticancer target. Phosphorylation of human CKα was found to regulate the enzyme's activity and its subcellular location. This study provides evidence for CKβ phosphorylation by protein kinase A (PKA). In vitro phosphorylation of CKβ by PKA was first detected by phosphoprotein staining, as well as by in-gel kinase assays. The phosphorylating kinase was identified as PKA by Western blotting. CKβ phosphorylation by MCF-7 cell lysate was inhibited by a PKA-specific inhibitor peptide, and the intracellular phosphorylation of CKβ was shown to be regulated by the level of cyclic adenosine monophosphate (cAMP), a PKA activator. Phosphorylation sites were located on CKβ residues serine-39 and serine-40 as determined by mass spectrometry and site-directed mutagenesis. Phosphorylation increased the catalytic efficiencies for the substrates choline and ATP about 2-fold, without affecting ethanolamine phosphorylation, and the S39D/S40D CKβ phosphorylation mimic behaved kinetically very similar. Remarkably, phosphorylation drastically increased the sensitivity of CKβ to hemicholinium-3 (HC-3) inhibition by about 30-fold. These findings suggest that CKβ, in concert with CKα, and depending on its phosphorylation status, might play a critical role as a druggable target in carcinogenesis.
Entamoeba histolytica is the parasite responsible for amoebiasis, which can result in amoebic colitis or amoebic liver abscess. Metronidazole has been the conventional treatment for intestinal amoebiasis, but concerns regarding resistance have emerged due to the identification of resistance pathways in E. histolytica. This study investigates a novel anti-amoebic approach targeting the CDP-choline pathway. Inhibition studies were conducted using potential choline kinase (CK) inhibitors to inhibit the EhCK enzyme, and RNA interference was employed to knock down the EhCK gene. Km and Vmax of purified EhCK and hCKa2 proteins were determined by pyruvate kinase-lactate dehydrogenase (PK-LDH) coupled assay. The IC50 values for EhCK and hCKa2 were determined with several commercial CK inhibitors. Selected inhibitors were incubated with E. histolytica trophozoites for 48 hours to determine the EC50 for each inhibitor. Silencing of gene encoding EhCK was carried out using duplex siRNA and the gene expression level was measured by real-time qPCR. Based on the IC50 values, three of the inhibitors, namely CK37, flavopiridol and H-89 were more potent against EhCK than hCKa2. Trophozoites growth inhibition showed that only HDTAB, H-89 and control drug metronidazole could penetrate and induce cell death after 48-hour incubation. siRNA concentration of 10 µg/mL was used for the transfection of positive control GAPDH, EhCK, and non-targeting GFP siRNAs. RNAi experiment concluded with positive control GAPDH downregulated by 99% while the level of EhCK mRNA was downregulated by 47%. In this study, potential inhibitors of EhCK and siRNA have been identified, paving the way for further refinement and testing to enhance their potency against EhCK while sparing hCK. The utilization of these specific inhibitors and siRNA targeting EhCK represents a novel approach to impede the growth of E. histolytica by disrupting its phospholipid synthesis pathway.
The de novo biosynthesis of phosphatidylcholine and phosphatidylethanolamine in Entamoeba histolytica is largely dependent on the CDP-choline and CDP-ethanolamine pathways. Although the first enzymes of these pathways, EhCK1 and EhCK2, have been previously characterized, their enzymatic activity was found to be low and undetectable, respectively. This study aimed to identify the unusual characteristics of these enzymes in this deadly parasite. The discovery that EhCKs prefer Mn2+ over the typical Mg2+ as a metal ion cofactor is intriguing for CK/EK family of enzymes. In the presence of Mn2+, the activity of EhCK1 increased by approximately 108-fold compared to that in Mg2+. Specifically, in Mg2+, EhCK1 exhibited a Vmax and K0.5 of 3.5 ± 0.1 U/mg and 13.9 ± 0.2 mM, respectively. However, in Mn2+, it displayed a Vmax of 149.1 ± 2.5 U/mg and a K0.5 of 9.5 ± 0.1 mM. Moreover, when Mg2+ was present at a constant concentration of 12 mM, the K0.5 value for Mn2+ was ~ 2.4-fold lower than that in Mn2+ alone, without affecting its Vmax. Although the enzyme efficiency of EhCK1 was significantly improved by about 25-fold in Mn2+, it is worth noting that its Km for choline and ATP were higher than in equimolar of Mg2+ in a previous study. In contrast, EhCK2 showed specific activity towards ethanolamine in Mn2+, exhibiting Michaelis-Menten kinetic with ethanolamine (Km = 312 ± 27 µM) and cooperativity with ATP (K0.5 = 2.1 ± 0.2 mM). Additionally, we investigated the effect of metal ions on the substrate recognition of human choline and ethanolamine kinase isoforms. Human choline kinase α2 was found to absolutely require Mg2+, while choline kinase β differentially recognized choline and ethanolamine in Mg2+ and Mn2+, respectively. Finally, mutagenesis studies revealed that EhCK1 Tyr129 was critical for Mn2+ binding, while Lys233 was essential for substrate catalysis but not metal ion binding. Overall, these findings provide insight into the unique characteristics of the EhCKs and highlight the potential for new approaches to treating amoebiasis. Amoebiasis is a challenging disease for clinicians to diagnose and treat, as many patients are asymptomatic. However, by studying the enzymes involved in the CDP-choline and CDP-ethanolamine pathways, which are crucial for de novo biosynthesis of phosphatidylcholine and phosphatidylethanolamine in Entamoeba histolytica, there is great potential to discover new therapeutic approaches to combat this disease.
Novel antimicrobial agents are crucial to combat antibiotic resistance in pathogenic bacteria. Choline kinase (ChoK) in bacteria catalyzes the synthesis of phosphorylcholine, which is subsequently incorporated into the cell wall or outer membrane. In certain species of bacteria, phosphorylcholine is also used to synthesize membrane phosphatidylcholine. Numerous human ChoK inhibitors (ChoKIs) have been synthesized and tested for anticancer properties. Inhibition of S. pneumoniae ChoK by human ChoKIs showed a promising effect by distorting the cell wall and retarded the growth of this pathogen. Comparison of amino acid sequences at the catalytic sites of putative choline kinases from pathogenic bacteria and human enzymes revealed striking sequence conservation that supports the potential application of currently available ChoKIs for inhibiting bacterial enzymes. We also propose the combined use of ChoKIs and nanoparticles for targeted delivery to the pathogen while shielding the human host from any possible side effects of the inhibitors. More research should focus on the verification of putative bacterial ChoK activities and the characterization of ChoKIs with active enzymes. In conclusion, the presence of ChoK in a wide range of pathogenic bacteria and the distinct function of this enzyme has made it an attractive drug target. This review highlighted the possibility of "choking" bacterial ChoKs by using human ChoKIs.