Displaying all 5 publications

Abstract:
Sort:
  1. Bakshi HA, Mishra V, Satija S, Mehta M, Hakkim FL, Kesharwani P, et al.
    Inflammation, 2019 Dec;42(6):2032-2036.
    PMID: 31377947 DOI: 10.1007/s10753-019-01065-3
    Hypoxia inducible factor (HIF)-prolyl hydroxylase (PHD) inhibitors are shown to be protective in several models of inflammatory bowel disease (IBD). However, these non-selective inhibitors are known to inhibit all the three isoforms of PHD, i.e. PHD-1, PHD-2 and PHD-3. In the present report, we investigated the associated changes in levels of PHDs during the development and recovery of chemically induced colitis in mice. The results indicated that in the experimental model of murine colitis, levels of both, PHD-1 and PHD-2 were found to be increased with the progression of the disease; however, the level of PHD-3 remained the same in group of healthy controls and mice with colitis. Thus, the findings advocated that inhibitors, which inhibited all three isoforms of PHD could not be ideal therapeutics for IBD since PHD-3 is required for normal gut function. Hence, this necessitates the development of new compounds capable of selectively inhibiting PHD-1 and PHD-2 for effective treatment of IBD.
    Matched MeSH terms: Colitis/drug therapy*
  2. Razali NN, Raja Ali RA, Muhammad Nawawi KN, Yahaya A, Mohd Rathi ND, Mokhtar NM
    World J Gastroenterol, 2023 Oct 28;29(40):5543-5556.
    PMID: 37970476 DOI: 10.3748/wjg.v29.i40.5543
    BACKGROUND: Phosphatidylinositol-3-kinases (PI3K) is a well-known route in inflammation-related cancer. Recent discovery on PI3K-related genes revealed a potential variant that links ulcerative colitis (UC) and colorectal cancer (CRC) with colitis-associated cancer (CAC). PI3K/AKT pathway has been recommended as a potential additional therapeutic option for CRC due to its substantial role in modifying cellular processes. Buparlisib is a pan-class I PI3K inhibitor previously shown to reduce tumor growth.

    AIM: To investigate the regulation of rs10889677 and the role of buparlisib in the PI3K signaling pathway in CAC pathogenesis.

    METHODS: Genomic DNA from 32 colonic samples, including CAC (n = 7), UC (n = 10) and CRC (n = 15), was sequenced for the rs10889677 mutation. The mutant and wildtype fragments were amplified and cloned in the pmirGLO vector. The luciferase activity of cloned vectors was assessed after transfection into the HT29 cell line. CAC mice were induced by a mixture of a single azoxymethane injection and three cycles of dextran sulphate sodium, then buparlisib was administered after 14 d. The excised colon was subjected to immunohistochemistry for Ki67 and Cleaved-caspase-3 markers and quantitative real-time polymerase chain reaction analysis for Pdk1 and Sgk2.

    RESULTS: Luciferase activity decreased by 2.07-fold in the rs10889677 mutant, confirming the hypothesis that the variant disrupted miRNA binding sites, which led to an increase in IL23R expression and the activation of the PI3K signaling pathway. Furthermore, CAC-induced mice had a significantly higher disease activity index (P < 0.05). Buparlisib treatment significantly decreased mean weight loss in CAC-induced mice (P < 0.05), reduced the percentage of proliferating cells by 5%, and increased the number of apoptotic cells. The treatment also caused a downward trend of Pdk1 expression and significantly decreased Sgk2 expression.

    CONCLUSION: Our findings suggested that the rs10889677 variant as a critical initiator of the PI3K signaling pathway, and buparlisib had the ability to prevent PI3K-non-AKT activation in the pathophysiology of CAC.

    Matched MeSH terms: Colitis/drug therapy
  3. Bhatia M, Landolfi C, Basta F, Bovi G, Ramnath RD, de Joannon AC, et al.
    Inflamm Res, 2008 Oct;57(10):464-71.
    PMID: 18827968 DOI: 10.1007/s00011-008-7210-y
    Chemokines play a fundamental role in trafficking and activation of leukocytes in colonic inflammation. We investigated the ability of bindarit, an inhibitor of monocyte chemoattractant protein-1 (MCP-1/CCL2) synthesis, to inhibit chemokine production by human intestinal epithelial cells (HT-29) and its effect in trinitro-benzene sulfonic acid (TNBS)-induced colitis in mice.
    Matched MeSH terms: Colitis/drug therapy
  4. Pandurangan AK, Mohebali N, Hasanpourghadi M, Looi CY, Mustafa MR, Mohd Esa N
    Biofactors, 2016 May;42(3):247-58.
    PMID: 26891685 DOI: 10.1002/biof.1267
    Ulcerative colitis (UC) is a nonspecific inflammatory disorder characterized by oxidative and nitrosative stress, leucocyte infiltration, and upregulation of inflammatory mediators. Boldine is an alkaloid compound found in Boldo tree, with multiple pharmacological actions, mainly anti-inflammatory, antioxidant, antitumor, and immunomodulatory activities. Hence, the effect of boldine for its anti-inflammatory properties against dextran sulfate sodium (DSS)-induced UC in BALB/c mice was studied. Administration of boldine to DSS-induced mice protects colon damage by reduced disease activity index, spleen weight, and increased colon length. Also administration of boldine showed a reduction in the activity of myeloperoxidase (MPO) and CD 68+ expression. Boldine reduced the colon damage, with significant reductions in both the extent and the severity of the inflammation as well as in crypt damage and leukocyte infiltration in the mucosa. Analysis in vivo showed clear decrease in the production of tumor necrosis factor (TNF)-α, Interleukin (IL)-6, IL-17, and signal transducer and activator of transcription-(p-STAT3)(Y705) with nuclear factor (p65-NF-κB) production being reduced significantly. Moreover, p65-NF-κB activation was reduced in mouse macrophage RAW 264.7 cells in vitro. The data demonstrated that boldine may be beneficial in colitis through selective immunomodulatory effects, which may be mediated, at least in part, by inhibition of p65-NF-κB and STAT3 signaling pathways. © 2016 BioFactors, 42(3):247-258, 2016.
    Matched MeSH terms: Colitis/drug therapy*
  5. Lean QY, Eri RD, Fitton JH, Patel RP, Gueven N
    PLoS One, 2015;10(6):e0128453.
    PMID: 26083103 DOI: 10.1371/journal.pone.0128453
    Inflammatory bowel diseases (IBD), such as ulcerative colitis and Crohn's disease, are an important cause of morbidity and impact significantly on quality of life. Overall, current treatments do not sustain a long-term clinical remission and are associated with adverse effects, which highlight the need for new treatment options. Fucoidans are complex sulphated, fucose-rich polysaccharides, found in edible brown algae and are described as having multiple bioactivities including potent anti-inflammatory effects. Therefore, the therapeutic potential of two different fucoidan preparations, fucoidan-polyphenol complex (Maritech Synergy) and depyrogenated fucoidan (DPF) was evaluated in the dextran sulphate sodium (DSS) mouse model of acute colitis. Mice were treated once daily over 7 days with fucoidans via oral (Synergy or DPF) or intraperitoneal administration (DPF). Signs and severity of colitis were monitored daily before colons and spleens were collected for macroscopic evaluation, cytokine measurements and histology. Orally administered Synergy and DPF, but not intraperitoneal DPF treatment, significantly ameliorated symptoms of colitis based on retention of body weight, as well as reduced diarrhoea and faecal blood loss, compared to the untreated colitis group. Colon and spleen weight in mice treated with oral fucoidan was also significantly lower, indicating reduced inflammation and oedema. Histological examination of untreated colitis mice confirmed a massive loss of crypt architecture and goblet cells, infiltration of immune cells and oedema, while all aspects of this pathology were alleviated by oral fucoidan. Importantly, in this model, the macroscopic changes induced by oral fucoidan correlated significantly with substantially decreased production of at least 15 pro-inflammatory cytokines by the colon tissue. Overall, oral fucoidan preparations significantly reduce the inflammatory pathology associated with DSS-induced colitis and could therefore represent a novel nutraceutical option for the management of IBD.
    Matched MeSH terms: Colitis/drug therapy*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links