Service architectures are necessary for providing value-added services in telecommunications networks, including those in medical institutions. Separation of service logic and control from the actual call switching is the main idea of these service architectures, examples include Intelligent Network (IN), Telecommunications Information Network Architectures (TINA), and Open Service Access (OSA). In the Distributed Service Architectures (DSA), instances of the same object type can be placed on different physical nodes. Hence, the network performance can be enhanced by introducing load balancing algorithms to efficiently distribute the traffic between object instances, such that the overall throughput and network performance can be optimised. In this paper, we propose a new load balancing algorithm called "Node Status Algorithm" for DSA infrastructure applicable to electronic-based medical institutions. The simulation results illustrate that this proposed algorithm is able to outperform the benchmark load balancing algorithms-Random Algorithm and Shortest Queue Algorithm, especially under medium and heavily loaded network conditions, which are typical of the increasing bandwidth utilization and processing requirements at paperless hospitals and in the telemedicine environment.
Matched MeSH terms: Computer Communication Networks/organization & administration*
A number of health databases is now available in Malaysia, but few are accessible to the general public. However, recently a service was launched nationwide via a videotex system to also target the Malaysia public. This service is provided by the School of Pharmaceutical Sciences, Universiti Sains Malaysia (USM) in collaboration with several Malaysian Government ministries and agencies. Access to health information via videotex, be it medical, pharmaceutical or environmental is viewed as an effective means of on-line information dissemination. It provides not only rapid retrieval but is also economical and interactive, particularly suitable for a developing country.
Matched MeSH terms: Computer Communication Networks/organization & administration*
Current trends in medicine, specifically in the electronic handling of medical applications, ranging from digital imaging, paperless hospital administration and electronic medical records, telemedicine, to computer-aided diagnosis, creates a burden on the network. Distributed Service Architectures, such as Intelligent Network (IN), Telecommunication Information Networking Architecture (TINA) and Open Service Access (OSA), are able to meet this new challenge. Distribution enables computational tasks to be spread among multiple processors; hence, performance is an important issue. This paper proposes a novel approach in load balancing, the Random Sender Initiated Algorithm, for distribution of tasks among several nodes sharing the same computational object (CO) instances in Distributed Service Architectures. Simulations illustrate that the proposed algorithm produces better network performance than the benchmark load balancing algorithms-the Random Node Selection Algorithm and the Shortest Queue Algorithm, especially under medium and heavily loaded conditions.
Matched MeSH terms: Computer Communication Networks/organization & administration
Web 2.0 technologies such as wikis, podcasts/vodcasting, blogs and semantic portals could be quite effective tools in e-learning for health professionals. If effectively deployed, such tools can offer a way to enhance students', clinicians' and patients' learning experiences, and deepens levels of learners' engagement and collaboration within medical learning environments. However, Web 2.0 requires simplicity of use as well as integration with modern web technologies. This article presents a Web 2.0 telemedical portal, which provides a social community-learning paradigm from the desk of the physician, the student, the hospital administrator, or the insurer. The presented portal utilises RESTful web services and techniques like content syndication, mushups and Asynchronous JavaScript API and XML (AJAX). The designed portal is based on the Apache Cocoon RESTful framework for sharing Digital Imaging and Communications in Medicine (DICOM) medical case studies. Central to this article is the integration between Cocoon and AJAX. The proposed AJAX-Cocoon portal utilises a JSP portlet architecture, which manages the interaction dynamics and overcomes the shortcomings of the JSR 168 and WSRP 1.0 standards.
Matched MeSH terms: Computer Communication Networks/organization & administration