Displaying all 10 publications

Abstract:
Sort:
  1. Ng RT, Lee WS, Ang HL, Teo KM, Yik YI, Lai NM
    Cochrane Database Syst Rev, 2016 Jul 05;7:CD010873.
    PMID: 27378432 DOI: 10.1002/14651858.CD010873.pub2
    BACKGROUND: Childhood constipation is a common problem with substantial health, economic and emotional burdens. Existing therapeutic options, mainly pharmacological, are not consistently effective, and some are associated with adverse effects after prolonged use. Transcutaneous electrical stimulation (TES), a non-pharmacological approach, is postulated to facilitate bowel movement by modulating the nerves of the large bowel via the application of electrical current transmitted through the abdominal wall.

    OBJECTIVES: Our main objective was to evaluate the effectiveness and safety of TES when employed to improve bowel function and constipation-related symptoms in children with constipation.

    SEARCH METHODS: We searched MEDLINE (PubMed) (1950 to July 2015), the Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library, Issue 7, 2015), EMBASE (1980 to July 2015), the Cochrane IBD Group Specialized Register, trial registries and conference proceedings to identify applicable studies .

    SELECTION CRITERIA: Randomized controlled trials that assessed any type of TES, administered at home or in a clinical setting, compared to no treatment, a sham TES, other forms of nerve stimulation or any other pharmaceutical or non-pharmaceutical measures used to treat constipation in children were considered for inclusion.

    DATA COLLECTION AND ANALYSIS: Two authors independently assessed studies for inclusion, extracted data and assessed risk of bias of the included studies. We calculated the risk ratio (RR) and corresponding 95% confidence interval (CI) for categorical outcomes data and the mean difference (MD) and corresponding 95% CI for continuous outcomes.

    MAIN RESULTS: One study from Australia including 46 children aged 8 to 18 years was eligible for inclusion. There were multiple reports identified, including one unpublished report, that focused on different outcomes of the same study. The study had unclear risk of selection bias, high risks of performance, detection and attrition biases, and low risks of reporting biases.There were no significant differences between TES and the sham control group for the following outcomes: i).number of children with > 3 complete spontaneous bowel movements (CSBM) per week (RR 1.07, 95% CI 0.74 to 1.53, one study, 42 participants) (

    QUALITY OF EVIDENCE: very low, due to high risk of bias and serious imprecision ), ii). number of children with improved colonic transit assessed radiologically (RR 5.00, 95% CI 0.79 to 31.63; one study, 21 participants) (

    QUALITY OF EVIDENCE: very low, due to high risk of bias, serious imprecision and indirectness of the outcome). However, mean colonic transit rate, measured as the position of the geometric centre of the radioactive substance ingested along the intestinal tract, was significantly higher in children who received TES compared to sham (MD 1.05, 95% CI 0.36 to 1.74; one study, 30 participants) (

    QUALITY OF EVIDENCE: very low, due to high risk of bias , serious imprecision and indirectness of the outcome). There was no significant difference between the two groups in the number of children with improved soiling-related symptoms (RR 2.08, 95% CI 0.86 to 5.00; one study, 25 participants) (

    QUALITY OF EVIDENCE: very low, due to high risk of bias and serious imprecision). There was no significant difference in the number of children with improved quality of life (QoL) (RR 4.00, 95% CI 0.56 to 28.40; one study, 16 participants) (

    QUALITY OF EVIDENCE: very low, due to high risk of bias issues and serious imprecision ). There were also no significant differences in in self-perceived (MD 5.00, 95% CI -1.21 to 11.21) or parent-perceived QoL (MD -0.20, 95% CI -7.57 to 7.17, one study, 33 participants for both outcomes) (QUALITY OF EVIDENCE for both outcomes: very low, due to high risk of bias and serious imprecision). No adverse effects were reported in the included study.

    AUTHORS' CONCLUSIONS: The very low quality evidence gathered in this review does not suggest that TES provides a benefit for children with chronic constipation. Further randomized controlled trials assessing TES for the management of childhood constipation should be conducted. Future trials should include clear documentation of methodologies, especially measures to evaluate the effectiveness of blinding, and incorporate patient-important outcomes such as the number of patients with improved CSBM, improved clinical symptoms and quality of life.

    Matched MeSH terms: Constipation/therapy*
  2. Ng RT, Lee WS, Ang HL, Teo KM, Yik YI, Lai NM
    Cochrane Database Syst Rev, 2016 11 11;11:CD010873.
    PMID: 27841439
    BACKGROUND: Childhood constipation is a common problem with substantial health, economic and emotional burdens. Existing therapeutic options, mainly pharmacological, are not consistently effective, and some are associated with adverse effects after prolonged use. Transcutaneous electrical stimulation (TES), a non-pharmacological approach, is postulated to facilitate bowel movement by modulating the nerves of the large bowel via the application of electrical current transmitted through the abdominal wall.

    OBJECTIVES: Our main objective was to evaluate the effectiveness and safety of TES when employed to improve bowel function and constipation-related symptoms in children with constipation.

    SEARCH METHODS: We searched MEDLINE (PubMed) (1950 to July 2015), the Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library, Issue 7, 2015), EMBASE (1980 to July 2015), the Cochrane IBD Group Specialized Register, trial registries and conference proceedings to identify applicable studies .

    SELECTION CRITERIA: Randomized controlled trials that assessed any type of TES, administered at home or in a clinical setting, compared to no treatment, a sham TES, other forms of nerve stimulation or any other pharmaceutical or non-pharmaceutical measures used to treat constipation in children were considered for inclusion.

    DATA COLLECTION AND ANALYSIS: Two authors independently assessed studies for inclusion, extracted data and assessed risk of bias of the included studies. We calculated the risk ratio (RR) and corresponding 95% confidence interval (CI) for categorical outcomes data and the mean difference (MD) and corresponding 95% CI for continuous outcomes. We evaluated the overall quality of the evidence supporting the outcomes assessed in this review using the GRADE criteria.

    MAIN RESULTS: One study from Australia including 46 children aged 8 to 18 years was eligible for inclusion. There were multiple reports identified, including one unpublished report, that focused on different outcomes of the same study. The study had unclear risk of selection bias, high risks of performance, detection and attrition biases, and low risks of reporting biases.We are very uncertain about the effects of TES on bowel movements, colonic transit, soiling symptoms and quality of life due to high risk of bias, indirectness and imprecision. For our outcomes of interest the 95% CI of most analysis results include potential benefit and no effect. There is insufficient evidence to determine the effect of TES on bowel movements and colonic transit. The study reported that 16/21 children in the TES group and 15/21 in the sham group had > 3 complete spontaneous bowel movements (CSBM) per week (RR 1.07, 95% CI 0.74 to 1.53; very low-quality evidence). Ten out of 14 children in the TES group had improved colonic transit compared to 1/7 in the sham group (RR 5.00, 95% CI 0.79 to 31.63; very low-quality evidence). Mean colonic transit rate, measured as the position of the geometric centre of the radioactive substance ingested along the intestinal tract, was higher in children who received TES compared to sham (MD 1.05, 95% CI 0.36 to 1.74; one study, 30 participants; very low-quality evidence). The radiological assessment of colonic transit outcomes means that these results might not translate to important improvement in clinical symptoms or increased bowel movements. There is insufficient evidence to determine the effect of TES on symptoms and quality of life (QoL) outcomes. Nine out of 13 children in the TES group had improved soiling-related symptoms compared to 4/12 sham participants (RR 2.08, 95% CI 0.86 to 5.00; very low-quality evidence). Four out of 8 TES participants reported an improvement in QoL compared to 1/8 sham participants (RR 4.00, 95% CI 0.56 to 28.40; very low-quality evidence). The effects of TES on self-perceived (MD 5.00, 95% CI -1.21 to 11.21; one study, 33 participants; very low-quality evidence) or parent-perceived QoL (MD -0.20, 95% CI -7.57 to 7.17, one study, 33 participants; very low-quality evidence) are uncertain. No adverse effects were reported in the included study.

    AUTHORS' CONCLUSIONS: The results for the outcomes assessed in this review are uncertain. Thus no firm conclusions regarding the efficacy and safety of TES in children with chronic constipation can be drawn. Further randomized controlled trials assessing TES for the management of childhood constipation should be conducted. Future trials should include clear documentation of methodologies, especially measures to evaluate the effectiveness of blinding, and incorporate patient-important outcomes such as the number of patients with improved CSBM, improved clinical symptoms and quality of life.

    Matched MeSH terms: Constipation/therapy*
  3. Ng RT, Lee WS, Ang HL, Teo KM, Yik YI, Lai NM
    Cochrane Database Syst Rev, 2016 Oct 12;10(10):CD010873.
    PMID: 27732736
    BACKGROUND: Childhood constipation is a common problem with substantial health, economic and emotional burdens. Existing therapeutic options, mainly pharmacological, are not consistently effective, and some are associated with adverse effects after prolonged use. Transcutaneous electrical stimulation (TES), a non-pharmacological approach, is postulated to facilitate bowel movement by modulating the nerves of the large bowel via the application of electrical current transmitted through the abdominal wall.

    OBJECTIVES: Our main objective was to evaluate the effectiveness and safety of TES when employed to improve bowel function and constipation-related symptoms in children with constipation.

    SEARCH METHODS: We searched MEDLINE (PubMed) (1950 to July 2015), the Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library, Issue 7, 2015), EMBASE (1980 to July 2015), the Cochrane IBD Group Specialized Register, trial registries and conference proceedings to identify applicable studies .

    SELECTION CRITERIA: Randomized controlled trials that assessed any type of TES, administered at home or in a clinical setting, compared to no treatment, a sham TES, other forms of nerve stimulation or any other pharmaceutical or non-pharmaceutical measures used to treat constipation in children were considered for inclusion.

    DATA COLLECTION AND ANALYSIS: Two authors independently assessed studies for inclusion, extracted data and assessed risk of bias of the included studies. We calculated the risk ratio (RR) and corresponding 95% confidence interval (CI) for categorical outcomes data and the mean difference (MD) and corresponding 95% CI for continuous outcomes.

    MAIN RESULTS: One study from Australia including 46 children aged 8 to 18 years was eligible for inclusion. There were multiple reports identified, including one unpublished report, that focused on different outcomes of the same study. The study had unclear risk of selection bias, high risks of performance, detection and attrition biases, and low risks of reporting biases.There were no significant differences between TES and the sham control group for the following outcomes: i).number of children with > 3 complete spontaneous bowel movements (CSBM) per week (RR 1.07, 95% CI 0.74 to 1.53, one study, 42 participants) (Quality of evidence: very low, due to high risk of bias and serious imprecision ), ii). number of children with improved colonic transit assessed radiologically (RR 5.00, 95% CI 0.79 to 31.63; one study, 21 participants) (Quality of evidence: very low, due to high risk of bias, serious imprecision and indirectness of the outcome). However, mean colonic transit rate, measured as the position of the geometric centre of the radioactive substance ingested along the intestinal tract, was significantly higher in children who received TES compared to sham (MD 1.05, 95% CI 0.36 to 1.74; one study, 30 participants) (Quality of evidence: very low, due to high risk of bias , serious imprecision and indirectness of the outcome). There was no significant difference between the two groups in the number of children with improved soiling-related symptoms (RR 2.08, 95% CI 0.86 to 5.00; one study, 25 participants) (Quality of evidence: very low, due to high risk of bias and serious imprecision). There was no significant difference in the number of children with improved quality of life (QoL) (RR 4.00, 95% CI 0.56 to 28.40; one study, 16 participants) (Quality of evidence: very low, due to high risk of bias issues and serious imprecision ). There were also no significant differences in in self-perceived (MD 5.00, 95% CI -1.21 to 11.21) or parent-perceived QoL (MD -0.20, 95% CI -7.57 to 7.17, one study, 33 participants for both outcomes) (Quality of evidence for both outcomes: very low, due to high risk of bias and serious imprecision). No adverse effects were reported in the included study.

    AUTHORS' CONCLUSIONS: The results for the outcomes assessed in this review are uncertain. Thus no firm conclusions regarding the efficacy and safety of TES in children with chronic constipation can be drawn. Further randomized controlled trials assessing TES for the management of childhood constipation should be conducted. Future trials should include clear documentation of methodologies, especially measures to evaluate the effectiveness of blinding, and incorporate patient-important outcomes such as the number of patients with improved CSBM, improved clinical symptoms and quality of life.

    Matched MeSH terms: Constipation/therapy*
  4. Mazlyn MM, Nagarajah LH, Fatimah A, Norimah AK, Goh KL
    J Gastroenterol Hepatol, 2013 Jul;28(7):1141-7.
    PMID: 23432408 DOI: 10.1111/jgh.12168
    Evidence suggests that probiotics reduce certain constipation-related symptoms. Lactobacillus casei strain Shirota has never been tested as treatment for functional constipation in otherwise-healthy subjects. To evaluate the efficacy of this probiotic among adults with functional constipation was aimed.
    Matched MeSH terms: Constipation/therapy*
  5. Yik YI, Stathopoulos L, Hutson JM, Southwell BR
    Neuromodulation, 2016 Jul;19(5):515-21.
    PMID: 27293084 DOI: 10.1111/ner.12451
    AIM: As transcutaneous electrical stimulation (TES) increased defecation in children and adults with Slow-Transit Constipation (STC), we performed a pilot study to test if TES can improve symptoms (defecation and soiling) in children with chronic constipation without STC and transit delay in the anorectum.

    METHODS: Children with treatment-resistant constipation presenting to a tertiary hospital had gastrointestinal nuclear transit study (NTS) showing normal proximal colonic transit and anorectal holdup of tracer. TES was administered at home (1 hour/day for 3 months) using a battery-powered interferential stimulator, with four adhesive electrodes (4 × 4 cm) connected so currents cross within the lower abdomen at the level of S2-S4. Stimulation was added to existing laxatives. Daily continence diary, and quality-of-life questionnaires (PedsQL4.0) were compared before and after TES.

    RESULTS: Ten children (4 females: 5-10 years, mean 8 years) had holdup in the anorectum by NTS. Nine had <3 bowel motions (BM)/week. After three months TES, defecation frequency increased in 9/10 (mean 0.9-4.1 BM/week, p = 0.004), with 6/9 improved to ≥3 BM/week. Soiling reduced in 9/10 from 5.9 to 1.9 days/week with soiling, p = 0.004. Ten were on laxatives, and nine reduced/stopped laxative use. Quality-of-life improved to within the normal range.

    CONCLUSION: TES improved symptoms of constipation in >50% of children with treatment-resistant constipation with isolated holdup in the anorectum. Further studies (RCTs) are warranted in these children.

    Matched MeSH terms: Constipation/therapy*
  6. Jayasimhan S, Yap NY, Roest Y, Rajandram R, Chin KF
    Clin Nutr, 2013 Dec;32(6):928-34.
    PMID: 23561636 DOI: 10.1016/j.clnu.2013.03.004
    Probiotics is an emerging therapeutic agent which may alleviate the symptoms of constipation. We evaluated the effectiveness of microbial cell preparation (Hexbio(®)) containing fructooligosaccharide, Bifidobacterium and Lactobacillus in improving stool frequency and symptoms of chronic constipation.
    Matched MeSH terms: Constipation/therapy*
  7. Tan AH, Lim SY, Chong KK, A Manap MAA, Hor JW, Lim JL, et al.
    Neurology, 2021 02 02;96(5):e772-e782.
    PMID: 33046607 DOI: 10.1212/WNL.0000000000010998
    OBJECTIVE: To determine whether probiotics are effective for constipation, a common and often difficult-to-treat problem, in Parkinson disease (PD).

    METHODS: In this double-blind, randomized, placebo-controlled, single-center trial, 280 patients with PD were screened, and 72 eligible patients were block-randomized (1:1) to receive either multistrain probiotics capsules (n = 34) or identical-appearing placebo (n = 38), for 4 weeks. The primary endpoint was the change in the average number of spontaneous bowel movements (SBM) per week during the last 2 weeks of intervention compared with the 2-week preintervention phase, recorded by daily stool diary. Secondary outcome measures included changes in stool consistency, constipation severity score, and quality of life related to constipation. Satisfaction with intervention received was assessed. Change in levels of fecal calprotectin, a marker of intestinal inflammation, was an exploratory outcome.

    RESULTS: SBM increased by 1.0 ± 1.2 per week after treatment with probiotics and decreased by 0.3 ± 1.0 per week in the placebo group (mean difference 1.3, 95% confidence interval 0.8-1.8, p < 0.001). Significant improvements were also seen for secondary outcomes after correction for multiple comparisons, including stool consistency (p = 0.009) and quality of life related to constipation (p = 0.001). In the treatment group, 65.6% reported satisfaction with the intervention vs only 21.6% in the placebo group (p < 0.001). One patient (2.9%) in the treatment group withdrew due to a nonserious adverse event. Fecal calprotectin did not change significantly during the study.

    CONCLUSIONS: Multistrain probiotics treatment was effective for constipation in PD. Further studies are needed to investigate the long-term efficacy and safety of probiotics in PD, as well as their mechanisms of action.

    CLINICALTRIALSGOV IDENTIFIER: NCT03377322.

    CLASSIFICATION OF EVIDENCE: This study provides Class I evidence that, for people with PD, multistrain probiotics significantly increased the average number of SBM per week.

    Matched MeSH terms: Constipation/therapy*
  8. Bahrudin MF, Abdul Rani R, Tamil AM, Mokhtar NM, Raja Ali RA
    Dig Dis Sci, 2020 Feb;65(2):541-549.
    PMID: 31209720 DOI: 10.1007/s10620-019-05695-3
    BACKGROUND: This study aimed to objectively investigate whether the addition of polydextrose to sterilized probiotic containing Lactobacillus helveticus will confer benefits to constipation-predominant irritable bowel syndrome patients.

    METHODS: A total of 163 patients were randomized into two groups: Group A to consume 350 mL of sterilized probiotic with 5.85 g polydextrose daily for 1 week and Group B without polydextrose. Intestinal transit time, fecal pH, fecal weight, and modified Garrigues questionnaires for pre- and post-consumption were assessed.

    RESULTS: Median intestinal transit time was significantly reduced from 58 (IQR 43-72) to 45 (IQR 24-59) hours and 48 (IQR 31-72) to 30 (IQR 24-49) hours for Groups A and B, respectively (p 

    Matched MeSH terms: Constipation/therapy*
  9. Lim YJ, Jamaluddin R, Hazizi AS, Chieng JY
    Nutrients, 2018 Jun 26;10(7).
    PMID: 29949873 DOI: 10.3390/nu10070824
    Synbiotics approach complementarily and synergistically toward the balance of gastrointestinal microbiota and improvement in bowel functions. A randomised, double-blind, placebo-controlled study was conducted to examine the effects of a synbiotics supplement among constipated adults. A total of 85 constipated adults, diagnosed by Rome III criteria for functional constipation were randomised to receive either synbiotics (n = 43) or placebo (n = 42) once daily (2.5 g) in the morning for 12 weeks. Eight times of follow-up was conducted every fortnightly with treatment response based on a questionnaire that included a record of evacuation (stool frequency, stool type according to Bristol Stool Form Scale), Patients Assessment on Constipation Symptoms (PAC-SYM), and Patients Assessment on Constipation Quality of Life (PAC-QOL). There were no significant differences in stool evacuation, but defecation frequency and stool type in treatment group were improved tremendously than in placebo group. While the treatment group was reported to have higher reduction in severity of functional constipation symptoms, the differences were not statistically significant. Dietary supplementation of synbiotics in this study suggested that the combination of probiotics and prebiotics improved the functional constipation symptoms and quality of life although not significant. This was due to the high placebo effect which synbiotics failed to demonstrate benefit over the controls.
    Matched MeSH terms: Constipation/therapy*
  10. Yik YI, Hutson J, Southwell B
    Neuromodulation, 2018 Oct;21(7):676-681.
    PMID: 29164818 DOI: 10.1111/ner.12734
    BACKGROUND: Transcutaneous electrical stimulation (TES) for one to two months has produced some improvement in treatment-resistant slow-transit constipation (STC) in children. Optimal parameters for treatment are not known. It is possible that more improvement would occur with stimulation for longer. This study examined the effectiveness of stimulation for six months.

    METHODS: Children with STC confirmed by nuclear transit study (NTS) were enrolled prospectively. All had chronic constipation for greater than two years and had failed medical treatment. TES was performed for one hour/day for six months using the INF 4160 (Fuji Dynamics) portable stimulator and 4 cm × 4 cm electrodes near the belly button and on the back. Families kept bowel diaries and completed PEDSQLCore QOL (4.0) questionnaires before and at end of treatment.

    RESULTS: Sixty-two children (34 females; seven years, 2-16 year) with STC were studied. Defecation frequency increased in 57/62 (91%, mean ± SEM pre- 1.49 ± 0.20 vs. post- 3.25 ± 0.25 defecation/week, p 

    Matched MeSH terms: Constipation/therapy*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links