Displaying all 5 publications

Abstract:
Sort:
  1. Aldridge S
    Nat Biotechnol, 2008 Jul;26(7):725.
    PMID: 18612284 DOI: 10.1038/nbt0708-725a
    Matched MeSH terms: Culicidae/genetics*
  2. Yong HS, Mak JW
    PMID: 7973944
    The genetics of human susceptibility to lymphatic filariasis, the genetic basis of filarial susceptibility in vector mosquitos, and the genetic constitution of human filarial parasites and their mosquito vectors are reviewed. It is evident that our present knowledge on the genetics of lymphatic filariasis is still very meagre. The need to study various genetic aspects of the disease is highlighted.
    Matched MeSH terms: Culicidae/genetics
  3. Kautner IM, Lam SK
    Res. Virol., 1992 May-Jun;143(3):193-7.
    PMID: 1355609
    In recent years, a large amount of nucleotide sequence data for dengue viruses has been published. Most of it was derived by sequencing cDNA synthesized from highly purified genomic viral RNA. This paper presents a simple and rapid method for the isolation of total RNA from mosquito cells infected with dengue viruses. This RNA can be used for direct nucleotide sequencing with specific primers without the need for further purification.
    Matched MeSH terms: Culicidae/genetics*
  4. Ferdig MT, Taft AS, Severson DW, Christensen BM
    Genome Res, 1998 Jan;8(1):41-7.
    PMID: 9445486
    One of the causative agents of lympahtic filariasis is the nematode parasite Brugia malayi that requires a competent mosquito vector for its development and transmission. Armigeres subalbatus mosquitoes rapidly destroy invading B. malayi microfilariae via a defense response known as melanotic encapsulation. We have constructed a genetic linkage map for this mosquito species using RFLP markers from Aedes aegypti. This heterologous approach was possible because of the conserved nature of the coding sequences used as markers and provided an experimental framework to evaluate the hypothesis that linkage and gene order are conserved between these mosquito species. Of the 56 Ae. aegypti markers tested, 77% hybridize to genomic DNA digests of Ar. subalbatus under stringent conditions, with 53% of these demonstrating strain-specific polymorphisms. Twenty-six Ae. aegypti markers have been mapped using an F2- segregating Ar. subalbatus population derived from a cross of strains originating in Japan and Malaysia. Linear order of these marker loci is highly conserved between the two species. Only 1 of these markers, LF92, was not linked in the manner predicted by the Ae. aegypti map. In addition, the autosomal sex-determination locus that occurs in linkage group 1 in Ae. aegypti resides in group 3 in Ar. subalbatus. The Ar. subalbatus map provides a basic genetic context that can be utilized in further genetic studies to clarify the genetic basis of parasite resistance in this mosquito and is a necessary precursor to the identification of genome regions that carry genes that determine the encapsulation phenotype. [The composite map and sequence database information for Ae. aegypti markers can be retrieved directly from the Ae. aegypti Genome Database through the World Wide Web: http://klab.agsci.colostate.edu.]
    Matched MeSH terms: Culicidae/genetics*
  5. Diez Benavente E, Florez de Sessions P, Moon RW, Holder AA, Blackman MJ, Roper C, et al.
    PLoS Genet, 2017 Sep;13(9):e1007008.
    PMID: 28922357 DOI: 10.1371/journal.pgen.1007008
    The macaque parasite Plasmodium knowlesi is a significant concern in Malaysia where cases of human infection are increasing. Parasites infecting humans originate from genetically distinct subpopulations associated with the long-tailed (Macaca fascicularis (Mf)) or pig-tailed macaques (Macaca nemestrina (Mn)). We used a new high-quality reference genome to re-evaluate previously described subpopulations among human and macaque isolates from Malaysian-Borneo and Peninsular-Malaysia. Nuclear genomes were dimorphic, as expected, but new evidence of chromosomal-segment exchanges between subpopulations was found. A large segment on chromosome 8 originating from the Mn subpopulation and containing genes encoding proteins expressed in mosquito-borne parasite stages, was found in Mf genotypes. By contrast, non-recombining organelle genomes partitioned into 3 deeply branched lineages, unlinked with nuclear genomic dimorphism. Subpopulations which diverged in isolation have re-connected, possibly due to deforestation and disruption of wild macaque habitats. The resulting genomic mosaics reveal traits selected by host-vector-parasite interactions in a setting of ecological transition.
    Matched MeSH terms: Culicidae/genetics
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links