METHODS: Pkdhps were amplified and sequenced from 28 P. knowlesi samples collected in 2008 and 2020 from nine provinces across Thailand. Combining pkdhfr sequencing data from previous work with pkdhps data to analyze polymorphisms of pkdhfr and pkdhps haplotype. Protein modeling and molecular docking were constructed using two inhibitors, sulfadoxine and sulfamethoxazole, and further details were obtained through analyses of protein-ligand interactions by using the Genetic Optimisation for Ligand Docking program. A phylogenetic tree cluster analysis was reconstructed to compare the P. knowlesi Malaysia isolates.
RESULTS: Five nonsynonymous mutations in the pkdhps were detected outside the equivalence of the binding pocket sites to sulfadoxine and sulfamethoxazole, which are at N391S, E421G, I425R, A449S, and N517S. Based on the modeling and molecular docking analyses, the N391S and N517S mutations located close to the enzyme-binding pocket demonstrated a different docking score and protein-ligand interaction in loop 2 of the enzyme. These findings indicated that it was less likely to induce drug resistance. Of the four haplotypes of pkdhfr-pkdhps, the most common one is the R34L pkdhfr mutation and the pkdhps quadruple mutation (GRSS) at E421G, I425R, A449S, and N517S, which were observed in P. knowlesi in southern Thailand (53.57%). Based on the results of neighbor-joining analysis for pkdhfr and pkdhps, the samples isolated from eastern Thailand displayed a close relationship with Cambodia isolates, while southern Thailand isolates showed a long branch separated from the Malaysian isolates.
CONCLUSIONS: A new PCR protocol amplification and evaluation of dihydropteroate synthase mutations in Knowlesi (pkdhps) has been developed. The most prevalent pkdhfr-pkdhps haplotypes (53.57%) in southern Thailand are R34L pkdhfr mutation and pkdhps quadruple mutation. Further investigation requires additional phenotypic data from clinical isolates, transgenic lines expressing mutant alleles, or recombinant proteins.
METHODS: A total of 151 P. falciparum isolates were collected between April 2018 and March 2019 from 12 of the governorates in Jazan region. Genomic DNA was extracted from dried blood spots and amplified using nested PCR. Polymorphisms in the propeller domain of the P. falciparum k13 (pfkelch13) gene and point mutations in the P. falciparum dihydrofolate reductase (pfdhfr) and dihydropteroate synthase (pfdhps) genes were identified by sequencing.
RESULTS: No mutations in the pfkelch13 propeller domain were found in any of the 151 isolates. However, point mutations in the pfdhfr and pfdhps genes were detected in 90.7% (137/151) of the isolates. The pfdhfr double mutations N51I + S108N (i.e. ACICNI haplotype) and triple mutations N51I + C59R + S108N (i.e. ACIRNI haplotype) were detected in 47% and 37.8% of the isolates, respectively. Moreover, the pfdhps single mutation at codon A437G and double mutations A437G + K540E (i.e. SGEAAI haplotype) were observed in 4.6% and 51.7% of the isolates, respectively. Interestingly, 23.8%, 25.1 and 12.6% of the isolates had quintuple, quadruple and triple mutated combined pfdhfr-pfdhps genotypes, respectively. Furthermore, significant associations were found between the prevalence of mutant haplotypes and the age, gender and nationality of the patients (P