Displaying all 3 publications

Abstract:
Sort:
  1. Teh LK, Hamzah S, Hashim H, Bannur Z, Zakaria ZA, Hasbullani Z, et al.
    Ther Drug Monit, 2013 Oct;35(5):624-30.
    PMID: 23942539 DOI: 10.1097/FTD.0b013e318290acd2
    Dihydropyrimidine dehydrogenase (DPD) is a pyrimidine catabolic enzyme involved in the initial and rate-limiting step of the catabolic pathway of toxic metabolites of 5-fluorouracil (5-FU). Several studies have reported that deficiency of DPD and polymorphisms of its gene are related to 5-FU toxicities and death. Association between serum concentration of 5-FU and its related toxicity has also been previously demonstrated. Hence, this study aims to understand the role of DPYD variants in serum level of 5-FU and the risk of developing toxicity to prevent adverse reactions and maximize therapy outcome for personalized medicine.
  2. Amjad MW, Amin MC, Katas H, Butt AM, Kesharwani P, Iyer AK
    Mol Pharm, 2015 Dec 7;12(12):4247-58.
    PMID: 26567518 DOI: 10.1021/acs.molpharmaceut.5b00827
    Multidrug resistance poses a great challenge to cancer treatment. In order to improve the targeting and codelivery of small interfering RNA (siRNA) and doxorubicin, and to overcome multidrug resistance, we conjugated a cholic acid-polyethylenimine polymer with folic acid, forming CA-PEI-FA micelles. CA-PEI-FA exhibited a low critical micelle concentration (80 μM), small average particle size (150 nm), and positive zeta potential (+ 12 mV). They showed high entrapment efficiency for doxorubicin (61.2 ± 1.7%, w/w), forming D-CA-PEI-FA, and for siRNA, forming D-CA-PEI-FA-S. X-ray photoelectron spectroscopic analysis revealed the presence of external FA on D-CA-PEI-FA micelles. About 25% doxorubicin was released within 24 h at pH 7.4, while more than 30% release was observed at pH 5. The presence of FA enhanced micelle antitumor activity. The D-CA-PEI-FA and D-CA-PEI-FA-S micelles inhibited tumor growth in vivo. No significant differences between their in vitro cytotoxic activities or their in vivo antitumor effects were observed, indicating that the siRNA coloading did not significantly increase the antitumor activity. Histological analysis revealed that tumor tissues from mice treated with D-CA-PEI-FA or D-CA-PEI-FA-S showed the lowest cancer cell density and the highest levels of apoptosis and necrosis. Similarly, the livers of these mice exhibited the lowest level of dihydropyrimidine dehydrogenase among all treated groups. The lowest serum vascular endothelial growth factor level (VEGF) (24.4 pg/mL) was observed in mice treated with D-CA-PEI-FA-S micelles using siRNA targeting VEGF. These findings indicated that the developed CA-PEI-FA nanoconjugate has the potential to achieve targeted codelivery of drugs and siRNA.
  3. Liem LK, Choong LH, Woo KT
    Clin Biochem, 2002 May;35(3):181-7.
    PMID: 12074825
    OBJECTIVE: Dihydropyrimidine dehydrogenase (DPD) catalyzes the degradation of thymine, uracil, and the chemotherapeutic drug 5-Fluorouracil. In general reverse-phase high pressure liquid chromatography is the standard method for separating 5-[2-(14)C]Fluorouracil and 5-[2-(14)C]Fluoro-5,6-dihydrouracil. However, the use of 100% aqueous solution (as HPLC mobile phase) may collapse the C-18 bonded phase and result in a retention time shift. The aim of this study is to develop a rapid, reproducible, sensitive method for screening partial DPD deficiency in healthy volunteers.

    DESIGN AND METHODS: The activity of DPD was measured using 5-[2- (14)C]Fluorouracil (5-[2-(14)C]FUra) followed by separation of substrate and product 5-[2-(14)C]FUraH(2) with a 15 x 4.6 mm I.D., 5 microm particle size (d(p)) porous graphitic carbon (PGC) column (Hypercarb(R)) and HPLC with online detection of the radioactivity. This was standardized using the protein concentration of the cytosol (NanoOrange(R) Protein Quantitation).

    RESULTS: Complete baseline separation of 5-[2-(14)C]Fluorouracil (5-[2-(14)C]FUra) and 5-[2-(14)C]Fluoro-5,6-dihydrouracil (5-[2-(14)C]FUraH(2)) was achieved using a porous graphitic carbon (PGC) column. The detection limit for 5-[2-(14)C]FUraH(2) was 0.4 pmol.

    CONCLUSIONS: By using linear gradient separation (0.1% Trifluoroacetic acid [TFA] in water to 100% Methanol) protocols in concert with PGC columns (Hypercarb(R)), we have demonstrated that a PGC column has a distinct advantage over C-18 reverse phase columns in terms of column stability (pH 1-14). This method provides an improvement on the specific assay for DPD enzyme activity. It is rapid, reproducible and sensitive and can be used for routine screening for healthy and cancer patients for partial and profound DPD deficiency before treatment with 5- FUra.

Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links