Caldimonas manganoxidans is a Gram-negative, thermophilic, bioplastic-producing bacterium that is a promising strain to overcome the drawbacks of existing bioplastic manufacturing methods. However, genetic manipulation of this species has not previously been studied. Here, we developed an optimized electrotransformation protocol for C. manganoxidans by screening conditions, including the bacterial growth phase, electroporation buffer, pulse strength, and recovery time. The optimized transformation protocol obtained (3.1 ± 0.78) × 108 colony-forming units/μg DNA of plasmid pBBR1MCS-2. High transformation efficiency was observed when using plasmid DNA isolated from C. manganoxidans. The DNA methylases of Escherichia coli did not affect the transformation efficiency of C. manganoxidans. The electrotransformation technique proposed here will be beneficial for the genetic manipulation of thermophilic Caldimonas species.
Mesenchymal stem cells (MSCs) hold tremendous potential for therapeutic use in stem cell-based gene therapy. Ex vivo genetic modification of MSCs with beneficial genes of interest is a prerequisite for successful use of stem cell-based therapeutic applications. However, genetic manipulation of MSCs is challenging because they are resistant to commonly used methods to introduce exogenous DNA or RNA. Herein we compared the effectiveness of several techniques (classic calcium phosphate precipitation, cationic polymer, and standard electroporation) with that of microporation technology to introduce the plasmid encoding for angiopoietin-1 (ANGPT-1) and enhanced green fluorescent protein (eGFP) into human adipose-derived MSCs (hAD-MSCs). The microporation technique had a higher transfection efficiency, with up to 50% of the viable hAD-MSCs being transfected, compared to the other transfection techniques, for which less than 1% of cells were positive for eGFP expression following transfection. The capability of cells to proliferate and differentiate into three major lineages (chondrocytes, adipocytes, and osteocytes) was found to be independent of the technique used for transfection. These results show that the microporation technique is superior to the others in terms of its ability to transfect hAD-MSCs without affecting their proliferation and differentiation capabilities. Therefore, this study provides a foundation for the selection of techniques when using ex vivo gene manipulation for cell-based gene therapy with MSCs as the vehicle for gene delivery.
This study aimed at utilizing electroporation to further enhance the growth of lactobacilli and their isoflavone bioconversion activities in biotin-supplemented soymilk. Strains of lactobacilli were treated with different pulsed electric field strength (2.5, 5.0 and 7.5 kV/cm) for 3, 3.5 and 4 ms prior to inoculation and fermentation in biotin-soymilk at 37°C for 24 h. Electroporation triggered structural changes within the cellular membrane of lactobacilli that caused lipid peroxidation (p 9 log CFU/ml after fermentation in biotin-soymilk (p
Chicken embryos are used widely in the fields of developmental biology and neurobiology. The chicken embryo also serves as a model to analyze gene expression and function using in ovo electroporation. Plasmids may be injected into the spinal cord or tectum of the chicken central nervous system by microinjection for electroporation. Here, we developed a novel method that combines in ovo electroporation and neuronal culturing to study gene function in the chicken tectum during embryo development. Our method can be used to study in-vivo and in-vitro exogenous genes' function. In addition, live cell imaging microscopy, immunostaining, and transfection can be used with our method to study neuronal growth, development, neurite growth and retraction, and axonal pathfinding. Our result showed that axons were present in isolated neurons after culturing for 24 h, and cell debris was low after replacing the media at 48 h. Many GFP-expressing neurons were observed in the cultured cells after 48 h. We successfully cultured the neurons for 3 weeks. Together, this method combines in ovo electroporation and neuronal culturing advantages and is more convenient for the gene function analysis.