There are many advantages of geothermal energy as an environmentally friendly resource; however, there are quite a several challenges that need to be overcome to completely harness sustainable and renewable energy that is also natural. The primary aim of this study is to examine what influence geothermal energy will have on land use changes among the considered 27 states in the European Union from the time being 1990 to 2021. The study adopts the auto-regressive distributed lag (ARDL); the findings show that geothermal energy growth could be leveraged to achieve remarkable growth in land use change among the 13 European developing economies than among the 14 EU developed economies. On the other hand, results from analysis further show that a remarkable decrease in land use change could be better attained among the 14 EU developed economies that among the 13 EU developing economies as a result of institutional quality. Furthermore, the result suggests that through economic growth, there could be a remarkable increase in land use change among the 14 EU developed economies than among the 13 EU developing economies. It was further revealed by the study that the level of land use change among the 27 EU nations could be remarkably increased, boosting the level of geothermal energy production that will assist in attaining the aims behind the 2030 energy union. This will eventually help in curbing the incidence of climate change and pollution in the environment; the projected calculations are observed to be valid, as confirmed through the chosen three estimators for this research. The chosen estimators are the pooled mean group, mean group, and dynamic fixed effect. The regulations and governors in 27 European Union countries should give priority to using geothermal in their renewable energy mix to reduce the incidence of changes in land structures. Also, an increased level of efficiency and effectiveness should be made to the generation of geothermal energy by state actors and investors to prompt sustainability and attainability with no further depreciation in agricultural and forest natural states.
This study's main goal is to evaluate how the research will look at the impact of geothermal energy production on the quality of the subterranean in the 27 European nations from 1990 to 2021. A considerable decline in the subterranean water supply can occur in EU14 emerging nations employing geothermal energy growth compared to EU13 emerging economies, according to research that uses the autoregressive distributed lag (ARDL). Fossil fuel use, population growth, and economic expansion are some factors that have a more detrimental effect on the subterranean water supply in EU14 emerging economies than in EU13 emerging nations. In contrast, the study's findings indicate that EU13 emerging nations may be better able to enhance their underground water supply than EU14 emerging economies because of more effective institutional qualities. The findings so indicate that increasing the amount of geothermal energy generation among the 27 European Union countries can accelerate subsurface water degradation at a high capacity and help achieve unionism's 2030 energy-related goals. When this is achieved, climate change will be put to check, as pollution of the environment. All calculations projected were seen to be of a good level of validity, and this is ascertained through three estimators considered in this study.
There are many advantages of geothermal energy, as an environmental friend resource. This heat radiation emanating from beneath the earth's surface presents man with good opportunities to harness it and makes a good level of agricultural food production and its processing in the EU region. The primary objective of this research is to examine the impact of geothermal energy on agri-food supply among the 27 European countries (EU27), within the time frame 1990 to 2021. The study adopted the autoregressive distributed lag (ARDL), and the findings from this study revealed that agri-food supply can increase significantly among the 13 European countries (EU13 emerging economies), leveraging on geothermal energy and economic growth variables than in the EU14 emerged economies. Furthermore, the outcome of this study showed that there could be a significant decrease in the food products coming from agricultural practices among the 13 European countries (EU13 emerging economies), due to an ineffective population density than in EU14 emerged economies. Furthermore, fossil fuel and institutional quality contribute more positively to the agri-food supply in the EU14 emerged economies than in the EU13 emerging economies. This results in an outcome that means that the agri-food supply among the EU13 emerging economies could be greatly boosted by replacing fossil fuel consumption with geothermal energy, and this facilitates the attainment of the European energy goals by the year 2030. Substituting fossil fuels with geothermal will also assist in minimizing the risks of environmental pollution and climate change. All projected calculations were seen as valid in this study, and this was confirmed by the three estimators adopted which are the pooled mean group, the mean group, and the dynamic fixed effect. This study, therefore, recommends that the 27 European countries should lay more emphasis on geothermal energy production as this will help in ensuring food security in the region. Policymakers and other government authorities as well as local and foreign investors should make more investments in geothermal energy resources as this study has proven that this will lead to agri-food security and sustainability. Not only this, it will as well curb the incidence of climate change and environmental pollution.