One thousand four hundreds and forty-five Malays registered with the Malaysian Marrow Donor Registry were typed for HLA-A, HLA-B and HLA-DR. Fifteen HLA-A, twenty nine HLA-B and fourteen HLA-DR alleles were detected. The most common HLA-A alleles and their frequencies were HLA-A24 (0.35), HLA-A11 (0.21) and HLA-A2 (0.15). The most common HLA-B alleles were HLA-B15 (0.26), HLA-B35 (0.11) and HLA-B18 (0.10) while the most common HLA-DR alleles were HLA-DR15 (0.28), HLA-DR12 (0.27) and HLA-DR7 (0.10). A24-B15-DR12 (0.047), A24-B15-DR15 (0.03) and the A24-B35-DR12 (0.03) were the most frequent haplotypes. This data may be useful in determining the probability of finding a matched donor and for estimating the incidence of HLA associated diseases.
OBJECTIVE:
To assess the relationship between the HLA-DRB1 genes with disease severity as assessed by radiological erosions in Malaysian patients with rheumatoid arthritis (RA).
METHODS:
In this cross-sectional study, we studied 61 RA patients who fulfilled the ACR criteria for the diagnosis of RA. HLA-DRB1 genotyping was performed by sequence specific primer (SSP) - PCR. Radiological grading and erosive score of the hands and wrists was calculated according to the Larsen-Dale method. Demographic data and treatment given to the patients were obtained from their case records.
RESULTS:
Fifty-six females and five males were studied from three ethnic groups. In 57 patients with erosions, rheumatoid factor was detected in 80%, HLA-DR4 in 40%, HLA-DRB1*0405 in 24% and shared epitope (SE) in 31%. The median delay in starting DMARDs was 24 months. The presence of rheumatoid factor, HLA-DR4 and HLA-DRB1*0405 were not significantly associated with a worse erosive score. Patients who possessed the SE had a higher erosive scores, compared to those who did not (p = 0.05). Concurrently, a delay in starting DMARD was associated with a high erosive score (p = 0.023, r = 0.348). However, after adjustment for the delay in starting DMARD, SE was no longer significantly associated with the erosive score.
CONCLUSIONS:
In these patients, the delay in starting DMARDs had a greater influence on the erosive score than SE alone. Whilst we cannot discount the contribution of the SE presence, we would advocate early usage of DMARDs in every RA patient to reduce joint erosions and future disability.
Worldwide population studies have generally agreed that rheumatoid arthritis (RA) is associated with a group of HLA-DRB1 alleles which share a common amino acid sequence at residues 70-74. This represents the first study to investigate the association of HLA-DRB1 genes with susceptibility to RA amongst Malay, Chinese and Indian ethnic groups in Malaysia. One hundred and thirty three RA patients and one hundred and sixty seven healthy controls were recruited. The HLA-DRB1 alleles were studied using the Phototyping method. The subtypes of HLA-DR4 were detected by "high resolution" PCR-SSP DRB1*04 typing techniques. The prevalence of HLA-DRB1*0405 was significantly higher in Malay patients with RA than in healthy controls (28.9 vs. 8.3%, p = 0.0016, OR = 4.48, 95% CI = 1.26-16.69). Similarly, DRB1*0405 was more common in Chinese RA patients than in controls (30.0 vs. 6.7%, p = 0.0029, OR = 6.00, 95% CI = 1.67-23.48). In addition, DRB1*0901 was a predisposing factor (32.0 vs. 6.7%,p = 0.0015, OR = 6.59, 95% CI = 1.85-25.64) and *0301/04 had a protective role (4.0vs. 25.0%, p = 0.00562, OR = 0.13, 95% CI = 0.02-0.62) in Malaysian Chinese RA. RA in Indians was associated with DRB1*1001 (51.1 vs. 8.5%,p = 0.00002, OR = 11.24, 95% CI = 3.13-44.18). DRB1*0701 (13.3 vs. 42.6%,p = 0.0022, OR = 2.73, 95% CI = 1.40-5.37) may have a protective effect. Therefore, in the Malaysian population, RA is primarily associated with the QRRAA motif, and we suggest that genetic factors play a crucial role in the pathogenesis of RA, compared to environmental factors.
BACKGROUND: To investigate the associations between HLA-DRB1 shared epitope (SE) alleles and rheumatoid arthritis in subsets of rheumatoid arthritis defined by autoantibodies in three Asian populations from Malaysia.
METHODS: 1,079 rheumatoid arthritis patients and 1,470 healthy controls were included in the study. Levels of antibodies to citrullinated proteins (ACPA) and rheumatoid factors were assessed and the PCR-SSO method was used for HLA-DRB1 genotyping.
RESULTS: The proportion of ACPA positivity among Malay, Chinese and Indian rheumatoid arthritis patients were 62.9%, 65.2% and 68.6%, respectively. An increased frequency of SE alleles was observed in ACPA-positive rheumatoid arthritis among the three Asian ethnic groups. HLA-DRB1*10 was highly associated with rheumatoid arthritis susceptibility in these Asian populations. HLA-DRB1*0405 was significantly associated with susceptibility to rheumatoid arthritis in Malays and Chinese, but not in Indians. HLA-DRB1*01 did not show any independent effect as a risk factor for rheumatoid arthritis in this study and HLA-DRB1*1202 was protective in Malays and Chinese. There was no association between SE alleles and ACPA- negative rheumatoid arthritis in any of the three Asian ethnic groups.
CONCLUSION: The HLA-DRB1 SE alleles increase the risk of ACPA-positive rheumatoid arthritis in all three Asian populations from Malaysia.
In this study, human leukocyte antigen (HLA) class I and II were examined through sequence-specific primer typing in 176 unrelated individuals from six Malay subethnic groups of Peninsular Malaysia: Kelantan (n = 25), Minangkabau (34), Jawa (30), Bugis (31), Banjar (33), and Rawa (23). The most common HLA alleles in all groups were A*24 (26-41%), Cw*07 (24-32%), B*15 (22-30%), DRB1*12 (15-36%), and DQB1*03 (25-51%). The Malay subethnic groups studied demonstrated a close relationship to each other and to other Asian populations, despite specific differences between them. Banjar, Bugis, and Jawa Malays demonstrated no significant difference from each other, which could be a result of their related origin from the islands around the Java Sea. These three Malay subethnic groups were then collapsed into one group, which also helped to increase the sample number and sharpen statistical results. Minangkabau and Rawa Malays exhibited high similarities in allele group and haplotype frequencies, which could be a consequence of their common origin from Sumatera. Kelantan Malays, in addition to their statistically significant differences compared with the other groups, also exhibited differences on the most frequent haplotypes, which are almost absent in the other subethnic groups studied.
This is the first report of high-resolution human leukocyte antigen (HLA) typing in four indigenous groups in Malaysia. A total of 99 normal, healthy participants representing the Negrito (Jehai and Kensiu), Proto-Malay (Temuan) and a native group of Borneo (Bidayuh) were typed for HLA-A, -B, -DRB1 and -DQB1 genes using sequence-based typing. Eleven HLA-A, 26 HLA-B, 16 HLA-DRB1 and 14 HLA-DQB1 alleles were detected, including a new allele, HLA-B*3589 in the Jehai. Highly frequent alleles were A*2407, B*1513, B*1801, DRB1*0901, DRB1*1202, DRB1*1502, DQB1*0303 and DQB1*0502. Principal component analysis based on high-resolution HLA-A, -B and -DRB1 allele frequencies showed close affinities among all four groups, including the Negritos, with other Southeast Asian populations. These results showed the scope of HLA diversity in these indigenous minority groups and may prove beneficial for future disease association, anthropological and forensic studies.
Antibodies to the ribosomal P protein are specific for SLE but their prevalence varies in different ethnic groups. In a group of Chinese SLE patients from Malaysia who have a high prevalence of this antibody, we have found an increased frequency of an uncharacterized HLA-DRB gene allele, DR16X, in patients who are positive for anti-P antibodies compared to antibody negative patients (31.3% vs 3.2%, P < 0.01, Pcorr not significant, relative risk = 13.6). DR16X has only been found in south east Asian populations and may be a genetic factor which influences the high prevalence of anti-P antibodies in Chinese.
The polymorphism of the human leucocyte antigen HLA-DR2 and the heterogeneity of HLA-DR2 class II-related haplotypes (HLA-DRB1-DRB5-DQA1-DQB1) were investigated in four populations of east and south-east Asia (SEA) and five Melanesian populations using TaqI restriction fragment length polymorphism (RFLP) analysis, and the polymerase chain reaction (PCR) amplification-based techniques PCR-RFLP and sequence-specific oligonucleotide (SSO) typing. The haplotype DRB1*1502-DRB5*0101-DQA1*0102-DQB1*0601 was common in Malaysians, Javanese, Thursday Islanders, Madang, Goroka and the Australian Aborigines, while DRB1*16021-DRB5*0101-DQA1*0102-DQB1*0502 was common in the Thai and Thursday Islanders. DRB1*1501-DRB5*0101-DQA1*0102-DQB1*0602 was present at a high frequency in Northern Chinese, Goroka, Watut and Australian Aborigines. The study describes four rare or unusual haplotypes: HLA-DRB1*1501-DRB5*0101-DQA1*0101-DQB1*0601, DRB1*1502-DRB5*0101-DQA1*0101-DQB1*0502, DRB1*1502-DRB5*0102-DQA1* 0102-DQB1*0502 and DRB1*1501-DRB5*0101-DQA1*0101/2-DQB1*0503; the latter two were confirmed by segregation in two Javanese families. A new DR2 allele, initially detected by PCR-RFLP and confirmed by DNA sequencing as DRB1*16022 (previously designated DRB1*16Madang), was seen in a Madang individual. A new HLA-DR2 TaqI RFLP subtype, locally designated as DR15U, is also described. This RFLP subtype segregated in a Javanese family and correlated with a typically SEA haplotype, DRB1*1502-DRB5*0102-DQA1*0101-DQB1*0501. The allele HLA-DR16Thai, determined by TaqI DRB RFLP, was found by PCR-RFLP and SSO typing to correlate with a unique SEA haplotype, HLA-DRB1*16021-DRB5*0101-DQA1*0102-DQB1*0502, and was observed in the Thai, Malaysian, Thursday Islander, Javanese and Northern Chinese populations.
The frequency of the HLA class II antigens/alleles (HLA-DR, DQ and DP) were studied in 70 Malaysian Chinese patients with systemic lupus erythematosus (SLE) to examine the contribution of these genes to disease susceptibility, their clinical expression and Immunological responses. This was done using modified PCR-RFLP technique. These samples were then compared with 66 ethnically matched controls. We found a strong association of the DQA1*0102 (p corr = 0.032, rr = 3.39), DQB1*0501 (p corr = 0.003, rr = 4.55), *0601 (p corr = 0.006, rr = 4.22) and DPB1* 0901(p corr = 0.02, rr = 4.58) with SLE. Clinically, we found a strong association of DR2 and DQA1*0301 with renal involvement and DQA1*0102 with alopecia. Immunologically, statistical analysis (Chi-square test ) showed a strong association of DQA1*0102 with anti-Ro/La antibodies while DQA1*0301 was observed to be strongly associated with antibodies to ds DNA. DQA1*0102 was found more frequently in those with a later disease onset (30 years of age or above). From these data we suggest that the HLA class II genes play a role in conferring disease susceptibility and clinical and immunological expression.
Study site: SLE clinics, Pusat Perubatan Universiti Kebangsaan Malaysia (PPUKM), Kuala Lumpur, Malaysia
A cross-sectional study on the expression of 6 lymphocyte markers was carried out on 481 patients with human immunodeficiency virus (HIV) and 79 normals after stratification based on absolute CD4 counts. The data were stratified according to the following groups: (I) 1201 to 1600, (II) 801 to 1200, (III) 401 to 800 and (IV) 0 to 400 (x 10(6) CD4 cells per mm3). The mean percentages of the subsets before stratification showed that HIV patients had increased percentages of CD3+ (75.7 against 66.9), CD3+CD8+ (52.2 against 32.3) and CD3+HLA-DR+ (36.1 against 14.4) cells and lower percentages of CD19 (10.3 against 13.3) and natural killer cells (13.7 against 20.4) when compared to controls in the same group. A definite trend, however, was only seen in CD3+CD8+ (47.4, 50.0, 54.0, 57.5 for groups I, II, III and IV respectively) and CD3+HLA-DR+ (29.1, 32.9, 38.4, 43.9 for groups I, II, III and IV respectively).