Two ticks were collected from a reticulated python (Malayopython reticulatus) caught in Tumpat District, Kelantan, Peninsular Malaysia. The ticks were first identified as Ambylomma sp. through morphological comparison with identification keys. Determination of the tick species was made through PCR and sequencing. However, BLAST analysis revealed 85-88% sequence nucleotide identity with Amblyomma nitidum and Amblyomma geoemydae. Additionally, the morphological features of the ticks collected in this study did not match either A. nitidum or A. geoemydae. Further examination of the ticks confirmed the species as Amblyomma cordiferum. This is the first record of A. cordiferum DNA sequence with morphological support of colour illustrations for adult A. cordiferum. This is also the most recent record of this host association in Peninsular Malaysia. Information from this report can serve as a reference for species identification using the described morphology or molecular sequences.
A parasitological survey of 16 pangolins, confiscated from the Department of Wildlife and Nature Park Peninsular Malaysia (DWNP) at Kelantan and Pulau Pinang, Malaysia was conducted in 2011. Amblyomma javanense (family: Ixodidae) was the only ectoparasite found on the pangolins. The prevalence, intensity and life cycle of A. javanense were observed together with the respective pangolins' age and sex. It was found that 68.8% of the pangolins were infected, and significant difference, χ(2)(1, N=16)=4.02, p=0.05 were observed with males higher in infestation (88.9%) as compared to the females (42.9%). However, the mean intensity was higher on females (72) as compared to males (31.6). In addition, significant difference, χ(2) (2, N=16)=6.73, p=0.05 was recorded between adults and juveniles with juveniles found to be 100% infected as compared to adult (63.6%). Nevertheless, the mean intensity was slightly higher on adults (47) than juveniles (35). Adult ticks were found in higher numbers as compared to the nymph and larvae with number of male ticks higher (236) as compared to the females (53). Similarly, a high significant difference χ(2)(2, N=469)=203.47, p=0.05 was recorded in the composition of the tick's life stages with a higher number of adult ticks (61.6%) followed by nymph (30.3%) and larvae (8.1%). As such, the results of this study revealed a picture of the A. javanense life cycle which is related to the age and gender of the Malayan Pangolin.
Babesia bigemina is a tick-borne protozoan that affects cattle in almost all regions of the world. Despite its importance, there is no report of its prevalence in cattle using molecular detection methods in Peninsular Malaysia. This study describes the prevalence, distribution, and risk factors associated with B. bigemina infection using molecular diagnostic methods. Also, the species of ticks infesting cattle and the attitude of cattle farmers towards tick control in Peninsular Malaysia were studied. Blood samples were collected from 1045 cattle from 43 herds throughout the country, and were subjected to molecular studies to detect B. bigemina. Tick samples for entomological studies were also collected and identified. Epidemiological information of each cattle and farm were obtained using a well-structured questionnaire containing open-ended and closed-ended questions. Data were statistically analyzed using Univariate and Multivariate models. The 211-base pair of AMA-1 gene of B. bigemina was amplified and confirmed in 30.5 % (319/1045; 95 % CI = 27.8-33.4) of the sampled population, with the haemoprotozoan detected in all the sampled herds. Breed, age, physiological status, management type, rate of de-ticking, and closeness to human settlement were the risk factors significantly (p < 0.05) associated with the prevalence of B. bigemina in cattle. Rhipicephalus (Boophilus) microplus and Haemaphysalis bispinosa were the species of ticks collected from cattle, with the former been more prevalent. A large number of cattle farmers (12/43; 28 %) do not control ticks in their herds. The findings of this study will create baseline data on the epidemiology of the haemoprotozoan and control patterns of its tick vectors that will guide the government in enacting policies that will improve food security and the economy of the nation.