Displaying all 12 publications

Abstract:
Sort:
  1. Apanaskevich DA, Apanaskevich MA, Nooma W, Ahantarig A, Trinachartvanit W
    Syst Parasitol, 2021 06;98(3):207-230.
    PMID: 33893604 DOI: 10.1007/s11230-021-09972-6
    Re-examination of the holotype of Dermacentor atrosignatus Neumann, 1906 (Acari: Ixodidae) stored in the Natural History Museum (London, UK) revealed that this taxon is identical with D. auratus Supino, 1897 and should be treated as a junior synonym of the latter species. A correct name for the distinct species previously identified as D. atrosignatus Neumann, 1906 sensu Wassef & Hoogstraal, 1984 should be D. tricuspis (Schulze, 1933) n. comb., n. stat. Adults of D. tricuspis are redescribed here. Re-examination of extensive holdings of Oriental Dermacentor Koch, 1844 ticks stored in the United States National Tick Collection revealed that a morphologically distinct new species of this genus, namely D. falsosteini D. Apanaskevich, M. Apanaskevich & Nooma n. sp. should be recognized. Adults of D. tricuspis and D. falsosteini n. sp. can be distinguished from other species of Oriental Dermacentor and each other by the colour pattern of the conscutum and scutum, the pattern of punctations on the pseudoscutum and scutum, the shape of female genital structures and spurs on coxa I. Dermacentor tricuspis is recorded from Indonesia, Malaysia, the Philippines and Thailand where the adults were mostly collected from various species of wild pigs (Artiodactyla: Suidae) and vegetation; few adults were available from other mammals (Artiodactyla: Bovidae; Carnivora: Canidae, Felidae, Ursidae; Pholidota: Manidae), as well as humans and reptiles (Squamata: Elapidae, Varanidae). One male was reared from a nymph collected on a rodent (Rodentia: Muridae). Dermacentor falsosteini n. sp. is found in Indonesia, Malaysia and Thailand where the adults were collected from bearded pig, Sus barbatus Müller, wild boar, S. scrofa Linnaeus, unidentified wild pig, Sus sp. (Artiodactyla: Suidae), Malayan tapir, Tapirus indicus Desmarest (Perissodactyla: Tapiridae), human and vegetation.
    Matched MeSH terms: Tick Infestations/parasitology
  2. Madinah A, Fatimah A, Mariana A, Abdullah MT
    PMID: 22299462
    Field surveys of ectoparasites on rodents and scandents were conducted in four localities of wildlife reserves in Peninsular Malaysia from October 2008 to November 2009. A total of 16 animals comprising 5 species of hosts were caught and examined for ectoparasites. The hosts examined were Maxomys rajah, Maxomys whiteheadi, Leopoldamys sabanus, Lariscus insignis and Tupaia glis. Of these hosts, 9 genera, consisting of 14 species of ectoparasites were extracted. Three species of ticks (Ixodidae), 7 species of mesostigmatid mites (Laelaptidae), 3 species of chiggers (Trombiculidae) and 1 species of listrophorid mites (Listrophoriidae) were identified. The infestation rate of ectoparasites observed ranged from 12.5% to 62.5%. Among the ectoparasites found, Ixodes granulatus and Leptotrombidium deliense are of known medical importance.
    Matched MeSH terms: Tick Infestations/parasitology
  3. Tan LP, Choong SS, Samsuddin AS, Lee SH
    Ticks Tick Borne Dis, 2019 10;10(6):101285.
    PMID: 31494069 DOI: 10.1016/j.ttbdis.2019.101285
    Two ticks were collected from a reticulated python (Malayopython reticulatus) caught in Tumpat District, Kelantan, Peninsular Malaysia. The ticks were first identified as Ambylomma sp. through morphological comparison with identification keys. Determination of the tick species was made through PCR and sequencing. However, BLAST analysis revealed 85-88% sequence nucleotide identity with Amblyomma nitidum and Amblyomma geoemydae. Additionally, the morphological features of the ticks collected in this study did not match either A. nitidum or A. geoemydae. Further examination of the ticks confirmed the species as Amblyomma cordiferum. This is the first record of A. cordiferum DNA sequence with morphological support of colour illustrations for adult A. cordiferum. This is also the most recent record of this host association in Peninsular Malaysia. Information from this report can serve as a reference for species identification using the described morphology or molecular sequences.
    Matched MeSH terms: Tick Infestations/parasitology
  4. Hassan M, Sulaiman MH, Lian CJ
    Acta Trop, 2013 May;126(2):142-5.
    PMID: 23416121 DOI: 10.1016/j.actatropica.2013.02.001
    A parasitological survey of 16 pangolins, confiscated from the Department of Wildlife and Nature Park Peninsular Malaysia (DWNP) at Kelantan and Pulau Pinang, Malaysia was conducted in 2011. Amblyomma javanense (family: Ixodidae) was the only ectoparasite found on the pangolins. The prevalence, intensity and life cycle of A. javanense were observed together with the respective pangolins' age and sex. It was found that 68.8% of the pangolins were infected, and significant difference, χ(2)(1, N=16)=4.02, p=0.05 were observed with males higher in infestation (88.9%) as compared to the females (42.9%). However, the mean intensity was higher on females (72) as compared to males (31.6). In addition, significant difference, χ(2) (2, N=16)=6.73, p=0.05 was recorded between adults and juveniles with juveniles found to be 100% infected as compared to adult (63.6%). Nevertheless, the mean intensity was slightly higher on adults (47) than juveniles (35). Adult ticks were found in higher numbers as compared to the nymph and larvae with number of male ticks higher (236) as compared to the females (53). Similarly, a high significant difference χ(2)(2, N=469)=203.47, p=0.05 was recorded in the composition of the tick's life stages with a higher number of adult ticks (61.6%) followed by nymph (30.3%) and larvae (8.1%). As such, the results of this study revealed a picture of the A. javanense life cycle which is related to the age and gender of the Malayan Pangolin.
    Matched MeSH terms: Tick Infestations/parasitology
  5. Gustafsson DR, Malysheva OD, Tolstenkov OO, Bush SE
    J Parasitol, 2019 12;105(6):846-857.
    PMID: 31730418
    Five new species of Guimaraesiella Eichler, 1949 are described and illustrated from hosts in the Eurylaimidae and Calyptomenidae. They are Guimaraesiella corydoni n. sp. from Corydon sumatranus laoensis Meyer de Schauensee, 1929 ; Guimaraesiella latirostris n. sp. from Eurylaimus ochromalus Raffles, 1822 ; Guimaraesiella cyanophoba n. sp. from Cymbirhynchus macrorhynchus malaccensis Salvadori, 1874 and C. m. siamensis Meyer de Schauensee and Ripley, 1940 ; Guimaraesiella altunai n. sp. from Calyptomena viridis caudacuta Swainson, 1838 ; and Guimaraesiella forcipata n. sp. from Eurylaimus steerii steerii Sharpe, 1876 . These represent the first species of Guimaraesiella described from the Calyptomenidae and Eurylaimidae, as well as the first species of this genus described from the Old World suboscines.
    Matched MeSH terms: Tick Infestations/parasitology
  6. Selmi R, Dhibi M, Ben Said M, Ben Yahia H, Abdelaali H, Ameur H, et al.
    Trop Biomed, 2019 Sep 01;36(3):742-757.
    PMID: 33597496
    Livestock constitute habitual hosts and carriers for several infectious pathogens which may represent a serious public health concern affecting the readiness of military forces and lead to wide economic losses. The present report aimed to investigate the prevalence of some haemopathogens infecting military livestock, particularly, dromedaries, sheep and horses using Giemsa-stained blood smears. A total of 300 animals (100 from each species) were selected, clinically examined and sampled. Trypanosoma spp. (22.0%), Anaplasma spp. (17.0%) and Babesia spp. (1.0%) were identified in camels' blood. Six dromedaries were found to be co-infected by Trypanosoma and Anaplasma organisms (6.0%). Camels of female gender, infested by ticks and showing clinical signs were statistically more infected by Trypanosoma spp., compared to those of male gender, free of ticks and apparently healthy (P= 0.027, 0.000 and 0.004, respectively). Babesia spp. infection (1.0%) was identified, for the first time in Tunisia, in one adult female camel that presented abortion and anemia. Anaplasma spp. was the only haemopathogen identified in examined sheep (6.0%) and horses (17.0%). Horses infested by Hippobosca equina flies and sheep infested by Rhipicephalus turanicus ticks were more infected by Anaplasma spp. than other non-infested animals (P=0.046 and 0.042, respectively). Hyalomma dromedarii, H. impeltatum and H. excavatum were the most prevalent diagnosed ticks removed from camels with an intensity of infestation of 1.2 ticks per animal. However, in sheep, only R. turanicus was identified. H. equina and Tabanus spp. were the potential hematophagous flies found in dromedaries and horses herds. This useful data must be taken into consideration during animal treatment and vectors' control programs in Tunisian military farms which help to limit the diffusion of vector-borne diseases, keep our livestock healthy and reduce economic losses.
    Matched MeSH terms: Tick Infestations/parasitology
  7. Uni S, Bain O, Fujita H, Matsubayashi M, Fukuda M, Takaoka H
    Parasite, 2013;20:1.
    PMID: 23340227 DOI: 10.1051/parasite/2012001
    Hard ticks taken from the Japanese serow, Capricornis crispus, in Yamagata Prefecture, Honshu, harboured infective larvae of onchocercid filariae after incubation from the 22nd to the 158th day. Haemaphysalis flava and H. japonica contained one to eight filarial larvae; females, males and a nymph of the ticks were infected. The 44 infective larvae recovered were 612-1,370 μm long, and 11 of them, 930-1,340 μm long, were studied in detail. The larvae possessed the morphologic characteristics of the larvae of the genus Cercopithifilaria, namely an oesophagus with a posterior glandular part, no buccal capsule and a long tail with three terminal lappets. Five types (A to E) of infective larvae were identified based on the morphologic characteristics. While to date five species of Cercopithifilaria have been described from the Japanese serow, a specific identification of the larvae found in this study was generally not possible. Only type E larvae could be tentatively assigned to Cercopithifilaria tumidicervicata, as they had a cervical swelling similar to that of the adults of this species. A key for the identification of the five larval types is presented. The study presents circumstantial evidences indicating that H. flava and H. japonica may transmit Cercopithifilaria spp. to Japanese serows. It also suggests the possibility that such filarial larvae will be found in hard ticks anywhere, because Cercopithifilaria is distributed worldwide, though this genus generally goes unnoticed, as its microfilariae occur in the skin, not in the blood, of host animals.
    Matched MeSH terms: Tick Infestations/parasitology
  8. Low VL, Tay ST, Kho KL, Koh FX, Tan TK, Lim YA, et al.
    Parasit Vectors, 2015;8:341.
    PMID: 26104478 DOI: 10.1186/s13071-015-0956-5
    The morphotaxonomy of Rhipicephalus microplus complex has been challenged in the last few years and prompted many biologists to adopt a DNA-based method for distinguishing the members of this group. In the present study, we used a mitochondrial DNA analysis to characterise the genetic assemblages, population structure and dispersal pattern of R. microplus from Southeast Asia, the region where the species originated.
    Matched MeSH terms: Tick Infestations/parasitology
  9. Watanabe M, Nakao R, Amin-Babjee SM, Maizatul AM, Youn JH, Qiu Y, et al.
    Trop Biomed, 2015 Jun;32(2):390-8.
    PMID: 26691268 MyJurnal
    A total of 44 Rhipicephalus sanguineus ticks collected from 23 dogs from Malaysia were screened for Rickettsia, Anaplasmataceae and Coxiella burnetii. Coxiella burnetii was detected in 59% (26/44) of ticks however Rickettsia and Anaplasmataceae were not detected in any of the ticks. In order to genotype the strains of C. burnetii, multispacer sequence typing (MST) was carried out using three different spacers. One of the spacers; Cox2 successfully amplified a fragment for which the full length sequence of 397 bp was obtained. The sequenced product revealed only a single nucleotide difference with the Cox2.3 type sequence.
    Matched MeSH terms: Tick Infestations/parasitology
  10. Trinachartvanit W, Maneewong S, Kaenkan W, Usananan P, Baimai V, Ahantarig A
    Parasit Vectors, 2018 Dec 27;11(1):670.
    PMID: 30587229 DOI: 10.1186/s13071-018-3259-9
    BACKGROUND: Coxiella bacteria were identified from various tick species across the world. Q fever is a zoonotic disease caused by the bacteria Coxiella burnetii that most commonly infects a variety of mammals. Non-mammalian hosts, such as birds, have also been reported to be infected with the pathogenic form of "Candidatus Coxiella avium". This research increases the list of tick species that have been found with Coxiella-like bacteria in Thailand.

    METHODS: A total of 69 ticks were collected from 27 domestic fowl (Gallus gallus domesticus), 2 jungle fowl (Gallus gallus) and 3 Siamese firebacks (Lophura diardi) at 10 locations (provinces) in Thailand. Ticks were identified and PCR was used to amplify Coxiella bacteria 16S rRNA, groEL and rpoB genes from the extracted tick DNA. MEGA6 was used to construct phylogenetic trees via a Maximum Likelihood method.

    RESULTS: The phylogenetic analysis based on the 16S rRNA gene showed that the Coxiella sequences detected in this study grouped in the same clade with Coxiella sequences from the same tick genus (or species) reported previously. In contrast, rpoB gene of the Coxiella bacteria detected in this study did not cluster together with the same tick genus reported previously. Instead, they clustered by geographical distribution (Thai cluster and Malaysian cluster). In addition, phylogenetic analysis of the groEL gene (the chaperonin family) showed that all Coxiella bacteria found in this study were grouped in the same clade (three sister groups).

    CONCLUSIONS: To our knowledge, we found for the first time rpoB genes of Coxiella-like bacteria in Haemaphysalis wellingtoni ticks forming two distinct clades by phylogenetic analysis. This may be indicative of a horizontal gene transfer event.

    Matched MeSH terms: Tick Infestations/parasitology
  11. Ola-Fadunsin SD, Sharma RSK, Abdullah DA, Gimba FI, Abdullah FFJ, Sani RA
    Ticks Tick Borne Dis, 2021 05;12(3):101653.
    PMID: 33465661 DOI: 10.1016/j.ttbdis.2021.101653
    Babesia bigemina is a tick-borne protozoan that affects cattle in almost all regions of the world. Despite its importance, there is no report of its prevalence in cattle using molecular detection methods in Peninsular Malaysia. This study describes the prevalence, distribution, and risk factors associated with B. bigemina infection using molecular diagnostic methods. Also, the species of ticks infesting cattle and the attitude of cattle farmers towards tick control in Peninsular Malaysia were studied. Blood samples were collected from 1045 cattle from 43 herds throughout the country, and were subjected to molecular studies to detect B. bigemina. Tick samples for entomological studies were also collected and identified. Epidemiological information of each cattle and farm were obtained using a well-structured questionnaire containing open-ended and closed-ended questions. Data were statistically analyzed using Univariate and Multivariate models. The 211-base pair of AMA-1 gene of B. bigemina was amplified and confirmed in 30.5 % (319/1045; 95 % CI = 27.8-33.4) of the sampled population, with the haemoprotozoan detected in all the sampled herds. Breed, age, physiological status, management type, rate of de-ticking, and closeness to human settlement were the risk factors significantly (p < 0.05) associated with the prevalence of B. bigemina in cattle. Rhipicephalus (Boophilus) microplus and Haemaphysalis bispinosa were the species of ticks collected from cattle, with the former been more prevalent. A large number of cattle farmers (12/43; 28 %) do not control ticks in their herds. The findings of this study will create baseline data on the epidemiology of the haemoprotozoan and control patterns of its tick vectors that will guide the government in enacting policies that will improve food security and the economy of the nation.
    Matched MeSH terms: Tick Infestations/parasitology
  12. Koh FX, Nurhidayah MN, Tan PE, Kho KL, Tay ST
    Vet Parasitol Reg Stud Reports, 2019 08;17:100315.
    PMID: 31303231 DOI: 10.1016/j.vprsr.2019.100315
    Limited information is available on tropical ticks and tick-borne bacteria affecting the health of humans and animals in the Southeast Asia region. Francisella tularensis is a tick-borne bacterium which causes a potentially life-threatening disease known as tularemia. This study was conducted to determine the occurrence of Francisella spp. in questing ticks collected from Malaysian forest reserve areas. A total of 106 ticks (mainly Dermacentor and Haemaphysalis spp.) were examined for Francisella DNA using a Polymerase chain reaction (PCR) assay targeting the bacterial 16S rDNA. Francisella DNA was detected from 12 Dermacentor ticks. Sequence analysis of the amplified 16S rDNA sequences (1035 bp) show >99% identity with that of Francisella endosymbiont reported in a tick from Thailand. A dendrogram constructed based on the bacterial 16S rDNA shows that the Francisella spp. were distantly related to the pathogenic strains of F. tularensis. Three Francisella-positive ticks were identified as Dermacentor atrosignatus, based on sequence analysis of the tick mitochondrial 16S rRNA gene. Further screening of cattle and sheep ticks (Haemaphysalis bispinosa and Rhipicephalus microplus) and animal samples (cattle, sheep, and goats) did not yield any positive findings. Our findings provide the first molecular data on the occurrence of a Francisella strain with unknown pathogenicity in Dermacentor questing ticks in Malaysia.
    Matched MeSH terms: Tick Infestations/parasitology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links