Displaying all 8 publications

Abstract:
Sort:
  1. Lye HS, Khoo BY, Karim AA, Rusul G, Liong MT
    J Microbiol Biotechnol, 2012 Jul;22(7):981-9.
    PMID: 22580318
    This study aimed to evaluate the effects of electroporation on the cell growth, cholesterol removal, and adherence abilities of L. acidophilus BT 1088 and their subsequent passages. The growth of electroporated parent cells increased (P<0.05) by 4.49-21.25% compared with that of the control. This may be attributed to the alteration of cellular membrane. However, growth of first, second, and third passages of treated cells was comparable with that of the control, which may be attributed to the resealing of transient pores on the cellular membrane. Electroporation also increased (P<0.05) assimilation of cholesterol by treated parent cells (>185.40%) and first passage (>21.72%) compared with that of the control. Meanwhile, incorporation of cholesterol into the cellular membrane was also increased (P<0.05) in the treated parent cells (>108.33%) and first passage (>26.67%), accompanied by increased ratio of cholesterol:phospholipids (C:P) in these passages. Such increased ratio was also supported by increased enrichment of cholesterol in the hydrophilic heads, hydrophobic tails, and the interface regions of the membrane phospholipids of both parent and first passage cells compared with that of the control. However, such traits were not inherited by the subsequent second and third passages. Parent cells also showed decreased intestinal adherence ability (P<0.05; decreased by 1.45%) compared with that of the control, without inheritance by subsequent passages of treated cells. Our data suggest that electoporation could be a potential physical treatment to enhance the cholesterol removal ability of lactobacilli that was inherited by the first passage of treated cells without affecting their intestinal adherence ability.
    Matched MeSH terms: Lactobacillus acidophilus/physiology
  2. Jin LZ, Ho YW, Ali MA, Abdullah N, Jalaludin S
    J. Appl. Bacteriol., 1996 Aug;81(2):201-6.
    PMID: 8760330
    Single strains of Lactobacillus acidophilus and Lact. fermentum, isolated from chicken intestine, were used to study in vitro interactions with Salmonella enteritidis, Salm. pullorum or Salm. typhimurium in an ileal epithelial cell (IEC) radioactive assay. Exclusion, competition and displacement phenomena were investigated by respectively incubating (a) lactobacilli and IEC together, prior to addition of salmonellae, (b) lactobacilli, IEC and salmonellae together, and (c) salmonellae and IEC, followed by the lactobacilli. Lactobacilli were selected for study because of their strong ability to adhere to IEC and poor aggregation with salmonellae. The results demonstrated that Lact. acidophilus significantly reduced (P < 0.05) the attachment of Salm. pullorum to IEC in the tests for exclusion and competition, but not in the displacement tests. Lactobacillus fermentum was found to have some ability to reduce the attachment of Salm. typhimurium to IEC under the conditions of exclusion (P < 0.08), competition (P < 0.09), but not displacement. However, both Lact. acidophilus and Lact. fermentum were unable to reduce the adherence of Salm. enteritidis to IEC under any of the conditions.
    Matched MeSH terms: Lactobacillus acidophilus/physiology*
  3. Tang HW, Abbasiliasi S, Murugan P, Tam YJ, Ng HS, Tan JS
    Biosci Biotechnol Biochem, 2020 Sep;84(9):1913-1920.
    PMID: 32448058 DOI: 10.1080/09168451.2020.1770572
    The aims of this study were to compare the effectiveness of different drying methods and to investigate the effects of adding a series of individual protectant such as skim milk, sucrose, maltodextrin, and corn starch for preserving Lactobacillus acidophilus FTDC 3081 cells during spray and freeze-drying and storage at different temperatures. Results showed a remarkable high survival rate of 70-80% immediately after spray- and freeze-drying in which the cell viability retained at the range of 109 to 1010 CFU/mL. After a month of storage, maltodextrin showed higher protective ability on both spray- and freeze-dried cells as compared to other protective agents at 4°C, 25°C, and 40°C. A complete loss in viability of spray-dried L. acidophilus FTDC 3081 was observed after a month at 40°C in the absence of protective agent.
    Matched MeSH terms: Lactobacillus acidophilus/physiology*
  4. Sarkawi M, Raja Ali RA, Abdul Wahab N, Abdul Rathi ND, Mokhtar NM
    Sci Rep, 2024 Apr 25;14(1):9478.
    PMID: 38658619 DOI: 10.1038/s41598-024-60029-2
    Irritable bowel syndrome (IBS) is frequently linked with coexisting mental illnesses. Our previous study discovered that 32.1% of IBS patients had subthreshold depression (SD), placing them at higher risk of developing major depression. Gut microbiota modulation through psychobiotics was found to influence depression via the gut-brain axis. However, the efficacy of lessening depression among IBS patients remains ambiguous. The study's aim was to investigate the roles of cultured milk drinks containing 109 cfu Lactobacillus acidophilus LA-5 and Lactobacillus paracasei L. CASEI-01 on depression and related variables among IBS participants with SD. A total of 110 IBS participants with normal mood (NM) and SD, were randomly assigned to one of four intervention groups: IBS-NM with placebo, IBS-NM with probiotic, IBS-SD with placebo, and IBS-SD with probiotic. Each participant was required to consume two bottles of cultured milk every day for a duration of 12 weeks. The following outcomes were assessed: depression risk, quality of life, the severity of IBS, and hormonal changes. The depression scores were significantly reduced in IBS-SD with probiotic and placebo from baseline (p 
    Matched MeSH terms: Lactobacillus acidophilus/physiology
  5. Fung WY, Yuen KH, Liong MT
    J Agric Food Chem, 2011 Aug 10;59(15):8140-7.
    PMID: 21711050 DOI: 10.1021/jf2009342
    This study explored the potential of soluble dietary fiber (SDF) from agrowastes, okara (soybean solid waste), oil palm trunk (OPT), and oil palm frond (OPF) obtained via alkali treatment, in the nanoencapsulation of Lactobacillus acidophilus . SDF solutions were amended with 8% poly(vinyl alcohol) to produce nanofibers using electrospinning technology. The spinning solution made from okara had a higher pH value at 5.39 ± 0.01 and a higher viscosity at 578.00 ± 11.02 mPa·s (P < 0.05), which resulted in finer fibers. FTIR spectra of nanofibers showed the presence of hemicellulose material in the SDF. Thermal behavior of nanofibers suggested possible thermal protection of probiotics in heat-processed foods. L. acidophilus was incorporated into the spinning solution to produce nanofiber-encapsulated probiotic, measuring 229-703 nm, visible under fluorescence microscopy. Viability studies showed good bacterial survivability of 78.6-90% under electrospinning conditions and retained viability at refrigeration temperature during the 21 day storage study.
    Matched MeSH terms: Lactobacillus acidophilus/physiology
  6. Aween MM, Hassan Z, Muhialdin BJ, Eljamel YA, Al-Mabrok AS, Lani MN
    J Food Sci, 2012 Jul;77(7):M364-71.
    PMID: 22757710 DOI: 10.1111/j.1750-3841.2012.02776.x
    A total of 32 lactic acid bacteria (LAB) were isolated from 13 honey samples commercially marketed in Malaysia, 6 strains identified as Lactobacillus acidophilus by API CHL50. The isolates had antibacterial activities against multiple antibiotic resistant's Staphylococcus aureus (25 to 32 mm), Staphylococcus epidermis (14 to 22 mm) and Bacillus subtilis (12 to 19 mm) in the agar overlay method after 24 h incubation at 30 °C. The crude supernatant was heat stable at 90 °C and 121 °C for 1 h. Treatment with proteinase K and RNase II maintained the antimicrobial activity of all the supernatants except sample H006-A and H010-G. All the supernatants showed antimicrobial activities against target bacteria at pH 3 and pH 5 but not at pH 6 within 72 h incubation at 30 °C. S. aureus was not inhibited by sample H006-A isolated from Libyan honey and sample H008-D isolated from Malaysian honey at pH 5, compared to supernatants from other L. acidophilus isolates. The presence of different strains of L. acidophilus in honey obtained from different sources may contribute to the differences in the antimicrobial properties of honey.
    Matched MeSH terms: Lactobacillus acidophilus/physiology*
  7. Nami Y, Abdullah N, Haghshenas B, Radiah D, Rosli R, Khosroushahi AY
    Anaerobe, 2014 Aug;28:29-36.
    PMID: 24818631 DOI: 10.1016/j.anaerobe.2014.04.012
    Lactobacillus acidophilus is categorized as a probiotic strain because of its beneficial effects in human health and prevention of disease transmission. This study is aimed to characterize the probiotic potential of L. acidophilus 36YL originally isolated from the vagina of healthy and fertile Iranian women. The L. acidophilus 36YL strain was identified using 16S rDNA gene sequencing and characterized by biochemical methodologies, such as antibiotics susceptibility, antimicrobial activity, and acid and bile resistance. The bioactivity of the secretion of this strain on four human cancer cell lines (AGS, HeLa, MCF-7, and HT-29) and one normal cell line (HUVEC) was evaluated by cytotoxicity assay and apoptosis analysis. This newly isolated strain was found to exhibit notable probiotic properties, such as admirable antibiotic susceptibility, good antimicrobial activity, and favorable resistance to acid and bile salt. The results of bioactivity assessment demonstrated acceptable anticancer effects on the four tested cancer cell lines and negligible side effects on the assayed normal cell line. Our findings revealed that the anticancer effect of L. acidophilus 36YL strain secretions depends on the induction of apoptosis in cancer cells. L. acidophilus 36YL strain is considered as a nutraceutical alternative or a topical medication with a potential therapeutic index because of the absence of cytotoxicity to normal cells, but effective toxicity to cancer cell lines.
    Matched MeSH terms: Lactobacillus acidophilus/physiology*
  8. Daood U, Matinlinna JP, Pichika MR, Mak KK, Nagendrababu V, Fawzy AS
    Sci Rep, 2020 07 03;10(1):10970.
    PMID: 32620785 DOI: 10.1038/s41598-020-67616-z
    To study the antimicrobial effects of quaternary ammonium silane (QAS) exposure on Streptococcus mutans and Lactobacillus acidophilus bacterial biofilms at different concentrations. Streptococcus mutans and Lactobacillus acidophilus biofilms were cultured on dentine disks, and incubated for bacterial adhesion for 3-days. Disks were treated with disinfectant (experimental QAS or control) and returned to culture for four days. Small-molecule drug discovery-suite was used to analyze QAS/Sortase-A active site. Cleavage of a synthetic fluorescent peptide substrate, was used to analyze inhibition of Sortase-A. Raman spectroscopy was performed and biofilms stained for confocal laser scanning microscopy (CLSM). Dentine disks that contained treated dual-species biofilms were examined using scanning electron microscopy (SEM). Analysis of DAPI within biofilms was performed using CLSM. Fatty acids in bacterial membranes were assessed with succinic-dehydrogenase assay along with time-kill assay. Sortase-A protein underwent conformational change due to QAS molecule during simulation, showing fluctuating alpha and beta strands. Spectroscopy revealed low carbohydrate intensities in 1% and 2% QAS. SEM images demonstrated absence of bacterial colonies after treatment. DAPI staining decreased with 1% QAS (p 
    Matched MeSH terms: Lactobacillus acidophilus/physiology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links