Displaying all 7 publications

Abstract:
Sort:
  1. Tang ASO, Wong QY, Yeo ST, Ting IPL, Lee JTH, Fam TL, et al.
    Am J Case Rep, 2021 May 26;22:e931655.
    PMID: 34038399 DOI: 10.12659/AJCR.931655
    BACKGROUND Leprosy is an infection caused by Mycobacterium leprae. An extensive literature search did not reveal many reports of melioidosis in association with leprosy. CASE REPORT A 22-year-old woman, who was diagnosed with multibacillary leprosy, developed dapsone-induced methemoglobinemia and hemolytic anemia, complicated by melioidosis. Methemoglobinemia was treated with methylene blue and vitamin C. Two weeks of ceftazidime was initiated to treat melioidosis, and the patient was discharged on amoxicillin/clavulanic acid and doxycycline as melioidosis eradication therapy. However, she developed drug-induced hypersensitivity. Trimethoprim/sulfamethoxazole, as an alternative treatment for melioidosis eradication, was commenced and was successfully completed for 12 weeks. During the fifth month of multidrug therapy, the patient developed type II lepra reaction with erythema nodosum leprosum reaction, which was treated with prednisolone. Leprosy treatment continued with clofazimine and ofloxacin, and complete resolution of skin lesions occurred after 12 months of therapy. CONCLUSIONS Our case highlighted the challenges posed in managing a patient with multibacillary leprosy with multiple complications. Clinicians should be aware that dapsone-induced methemoglobinemia and hemolysis might complicate the treatment of leprosy. Our case also highlighted the safety and efficacy of combining ofloxacin and clofazimine as a leprosy treatment regimen in addition to gradual steroid dose titration in the presence of type II lepra reaction.
    Matched MeSH terms: Leprostatic Agents/adverse effects
  2. Kamaludin F
    Nihon Rai Gakkai Zasshi, 1990 7 1;59(3-4):169-82.
    PMID: 2133468
    Matched MeSH terms: Leprostatic Agents/administration & dosage; Leprostatic Agents/therapeutic use*
  3. Jamil A, Noor NM, Osman AS, Baseri MM, Muthupalaniappen L
    Indian J Dermatol Venereol Leprol, 2013 Jul-Aug;79(4):527-9.
    PMID: 23760326 DOI: 10.4103/0378-6323.113096
    Matched MeSH terms: Leprostatic Agents/pharmacology; Leprostatic Agents/therapeutic use*
  4. Jayalakshmi P
    Malays J Pathol, 1994 Jun;16(1):7-9.
    PMID: 16329568
    Leprosy is a chronic infectious disease and is still a public health problem in Malaysia. In 1926, the Leper Enactment Act was established which required compulsory notification and isolation of leprosy patients. As a result, the National Leprosy Control Centre (NLCC) was built in Sungai Buloh, Selangor. In 1969, the National Leprosy Control programme was launched with the objective of early case finding and decentralisation of treatment of leprosy. The treatment of leprosy patients is integrated with basic Medical and Health services in Malaysia. With the implementation of multiple drug therapy in 1985, the National prevalence rate of leprosy has reduced from 5.7 per 10,000 in 1983 to 1.7 per 10,000 in 1992. The Research Unit in NLCC was established in 1950, where cultivation of Mycobacterium leprae using mouse foot-pad technique is done. This technique is used for assessment of efficacy of chemotherapeutic agents in leprosy. Research activites are also done in collaboration with the Institute for Medical Research in Kuala Lumpur such as isolation of Mycobacterium leprae antigen using T cell clones and phenolic glycolipid antigen.
    Matched MeSH terms: Leprostatic Agents/pharmacology; Leprostatic Agents/therapeutic use
  5. Baharuddin H, Taib T, Zain MM, Ch'ng S
    Int J Rheum Dis, 2016 Oct;19(10):1035-1038.
    PMID: 27456320 DOI: 10.1111/1756-185X.12916
    Leprosy is a chronic granulomatous infection caused by Mycobacterium leprae with predominant involvement of skin and nerves. We present a 70-year-old man with leprosy whose initial presentation resembled rheumatologic disease, due to leprae reaction. He presented with an 8-week history of worsening neuropathic pain in the right forearm, associated with necrotic skin lesions on his fingers that had ulcerated. Physical examination revealed two tender necrotic ulcers at the tip of the right middle finger and the dorsal aspect of the left middle finger. The patient had right wrist tenosynovitis and right elbow bursitis. Apart from raised inflammatory markers, the investigations for infection, connective tissue disease, vasculitis, thromboembolic disease and malignancy were negative. During the fourth week of hospitalization, we noticed a 2-cm hypoesthetic indurated plaque on the right inner arm. Further examination revealed thickened bilateral ulnar, radial and popliteal nerves. A slit skin smear was negative. Two skin biopsies and a biopsy of the olecranon bursa revealed granulomatous inflammation. He was diagnosed with paucibacillary leprosy with neuritis. He responded well to multidrug therapy and prednisolone; his symptoms resolved over a few weeks. This case illustrates the challenges in diagnosing a case of leprosy with atypical presentation in a non-endemic country.
    Matched MeSH terms: Leprostatic Agents/therapeutic use
  6. Chen WT, Wang CW, Lu CW, Chen CB, Lee HE, Hung SI, et al.
    J Invest Dermatol, 2018 07;138(7):1546-1554.
    PMID: 29458119 DOI: 10.1016/j.jid.2018.02.004
    Dapsone-induced hypersensitivity reactions may cause severe cutaneous adverse reactions, such as drug reaction with eosinophilia and systemic symptoms (DRESS). It has been reported that HLA-B*13:01 is strongly associated with dapsone-induced hypersensitivity reactions among leprosy patients. However, the phenotype specificity and detailed immune mechanism of HLA-B*13:01 remain unclear. We investigated the genetic predisposition, HLA-B*13:01 function, and cytotoxic T cells involved in the pathogenesis of dapsone-induced severe cutaneous adverse reactions. We enrolled patients from Taiwan and Malaysia with DRESS and maculopapular eruption with chronic inflammatory dermatoses. Our results showed that the HLA-B*13:01 allele was present in 85.7% (6/7) of patients with dapsone DRESS (odds ratio = 49.64, 95% confidence interval = 5.89-418.13; corrected P = 2.92 × 10-4) but in only 10.8% (73/677) of general population control individuals in Taiwan. The level of granulysin, the severe cutaneous adverse reaction-specific cytotoxic protein released from cytotoxic T cells, was increased in both the plasma of DRESS patients (36.14 ± 9.02 ng/ml, P < 0.05) and in vitro lymphocyte activation test (71.4%, 5/7 patients) compared with healthy control individuals. Furthermore, dapsone-specific cytotoxic T cells were significantly activated when co-cultured with HLA-B*13:01-expressing antigen presenting cells in the presence of dapsone (3.9-fold increase, compared with cells with no HLA-B*13:01 expression; P < 0.01). This study indicates that HLA-B*13:01 is strongly associated with dapsone DRESS and describes a functional role for the HLA-restricted immune mechanism induced by dapsone.
    Matched MeSH terms: Leprostatic Agents/adverse effects*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links