BACKGROUND: Filariasis is a major public health problem in developing countries, and the diagnosis is conventionally made by demonstrating microfilariae in the peripheral blood smear. However, microfilariae have been incidentally detected in fine needle aspirates of various lesions in clinically unsuspected cases of filariasis with absence of microfilariae in the peripheral blood.
CASES: In case 1, a 21-year-old woman presented with multiple left axillary lymphadenopathy of 3 months' duration. In case 2, a 32-year-old woman presented with a thyroid nodule of 7 months' duration. Fine needle aspiration smears from both cases showed sheathed microfilariae of Wuchereria bancrofti. In both cases, microfilariae could not be demonstrated in the peripheral blood smears and the blood eosinophil counts were within normal limits. The histopathologic examination showed neither microfilariae nor adult worm.
CONCLUSION: Although microfilariae in cytologic material are considered incidental findings, these cases illustrate the value of routine fine needle aspiration cytology in the detection of asymptomatic and clinically unsuspected cases of bancroftian filariasis. Absence of microfilariae in the peripheral blood does not exdude filarial infection.
Infective larvae of Brugia malayi subperiodic obtained by dissection of infected Aedes togoi were injected subcutaneously into the scrotal region of Mastomys natalensis. From altogether 58 infected male M. natalensis 81% showed consistently or intermittently detectable microfilaraemia, whereas in 19% of the animals no microfilaraemia could be detected at any stage. The mean prepatent period was 136 days; the microfilarial density varied from 1 to 535 per 20 c. mm blood. In those animlas with consistently detectable and in general higher microfilaraemia an average of 13.1 live adult worms were found, against an average of 6.4 adult worms in animals with intermittent detectable and in general lower microfilaraemia. An average of 1.5 worms was found in animals which at no stage showed detectable microfilaraemia. A correlation between worm burden and prepatent period could be observed in the individual groups. From the total of 520 live adult worms recovered at necropsy, 37% were found in the lungs, 29% in the parenchyma of the testes and 34% in the lymphatic system. 47% of live fertile female worms were found in the lymphatic system, whereas the majority, i.e; 52% of infertile female worms were detected in the lungs. In addition, 380 encapsulated dead worms were found, most of them (98%) in the lymphatic system. 61% of a total of 900 live and dead worms were found in the region of the lymphatic system.
Matched MeSH terms: Microfilaria/growth & development
Adult worms of the rural strain of Wuchereria bancrofti in Peninsular Malaysia obtained from a successful experimental transmission in an immunosuppressed Macaca fascicularis are described for the first time. Although the worms, especially females, were slightly smaller, they were similar in morphology to those of the periodic and non-periodic W. bancrofti previously described.
A total of fifty anurans, comprising of Rana limnocharis and Bufo melanostictus were collected from Sungai Pinang, Balik Pulau, Penang. The prevalence, mean intensity and distribution of parasite species along the digestive tract were reported. Seven species of parasites were recorded. Blood parasites recovered were trypansomes and microfilariae.
In Armigeres subalbatus, 60% and 3% of the ingested Brugia pahangi microfilariae (mf) respectively migrated into the haemocoel and the thorax within 5 minutes post ingestion (p.i.). Most of the mf had migrated from the gut into the haemocoel within the first 10 minutes p.i. There was no correlation between the number of mf ingested and the migration rate though those in mosquitoes with a low mf burden tend to migrate earlier. At 24 hours p.i., 5-30% of the mf were still in the gut; 19% of these mf were immobile. At 48 hours p.i. only 2% of the mf were mobile. B. pahangi mf isolated from blood meals at 24 hours p.i., failed to develop when inoculated into Armigeres subalbatus. 54% and 73% of the mf isolated from a 24 hour old clotted blood of a B. pahangi-infected cat and fresh peripheral cat blood respectively developed into stage-1 larva. Probably mf left in the midgut at 24 hours p.i. are the young and immature worms and are physiologically incapable of penetrating the gut.
Presbytis cristata monkeys infected through the inoculation of between 200 and 400 subperiodic Brugia malayi infective larvae (L3) in the right thigh, in both thighs or in the dorsum of the right foot were followed up for varying periods of up to about 8 months after infection. All 148 inoculated animals became patent, with mean prepatent periods being between 66 and 76 days. In animals injected in the thigh, the patterns of microfilaraemia were similar, there being a rapid rise in the geometric mean counts (GMCs) of microfilariae during the first 10-12 weeks of patency, which then plateaued at levels of greater than 1000/ml. Adult worm recovery, expressed as the percentage of the infective dose, was significantly higher in animals injected with 100 L3 in each thigh, being 9.4% as compared with 2.8%-4.8% in other groups. It is therefore recommended that animals should be injected with 100 L3 in each thigh and that the testing of potential filaricides in this model be carried out during the phase of rapid increase in microfilaraemia to ensure that any microfilaricidal effect can easily be detected.
Two out of six monoclonals (McAbs) produced against subperiodic Brugia malayi infective larva (L3) antigens impaired B. malayi L3 motility independently of human buffy coat cells. Scanning electron microscopy studies showed damage to L3 surface and loss of regular cuticular annulations. The two McAbs (BML 1a and BM1 8b) did not affect B. malayi microfilaria (mf). They were IFAT-positive with B. malayi adult and L3 antigens; other McAbs which did not affect mf or L3 motility were IFAT-negative. All six McAbs did not promote cellular adherence of normal human buffy coat cells to mf or L3.
The filaria vector competence of Anopheles stephensi was compared with Brugia-susceptible Aedes aegypti Liverpool strain, An. gambiae Badagry Lagos strain and An. dirus Perlis Malaysia strain. An. stephensi ingested more Brugia pahangi microfilariae, had the highest infectivity rate and yielded more infective mosquitoes than the other two anopheline species. The overall vector competence of An. stephensi was 0.13 times that of Ae. aegypti, 0.62 times that of An. gambiae and 2.17 times that of An. dirus. However, heavy mortality among infected An. stephensi in the present investigation indicates that the filaria vectorial capacity of the mosquito might be limited epidemiologically. The relationship between filaria vector competence and mosquito foregut armature is discussed. It was observed that the relative vector competence of the three anopheline species tested was in the same order as their relative degrees of armature elaboration. The converse would be expected if foregut armatures really give partial protection to the mosquitoes against filarial infection. It is suggested that high host microfilariae density favours larval survival proportional to the degree of armature development in Anopheles (Cellia) species.
The known filaricides, suramin and diethylcarbamazine citrate, were tested against subperiodic Brugia malayi infection in the leaf-monkey, Presbytis cristata. As expected, intravenous suramin at 10 mg/kg daily x 5 days or 17 mg/kg weekly x 5 weeks, did not show any microfilaricidal activity, but substantially reduced the recovery of live adult worms to 50.6% and 13.6% of controls respectively. Oral diethylcarbamazine citrate at 6 mg/kg daily x 6 or 10 days reduced final microfilarial counts to 30% of initial counts four weeks post-treatment and adult worm recovery was reduced to 4.5% and 0% of controls respectively. Although the antifilarial activity of these drugs against the infection in this non-human primate model appears to be similar to that seen in man, these results have to be confirmed using larger groups of animals.
Matched MeSH terms: Microfilaria/drug effects; Microfilaria/growth & development
Filariasis, a parasitic infection endemic in parts of India, Myanmar, islands of the South Pacific, West and East Africa and Saudi Arabia can be diagnosed from various types of cytopathological specimens. This case documents the detection of filarial infection from hydrocele fluid cytology in a 30-year-old Myanmar migrant worker in Malaysia.
Accurate diagnosis of human filarial infections still remains a problem for clinicians and co-ordinators of filariasis control programs. Diagnosis of filariasis is based on parasitological, histopathological, clinical and immunological approaches. No significant advances have been made for the first three approaches although some refinements in their use and interpretation of results have occurred. For the immunological approach, intradermal tests and antibody detection assays using crude parasite extracts generally lack specificity and/or sensitivity to discriminate between past and present filarial infections in humans. Antigen detection assays would therefore provide a more accurate indication of active filarial infections. Several monoclonal antibodies to various stages of lymphatic filarial parasites have been developed and appear potentially useful for filarial antigen detection.
Quantitative understanding of the transmission dynamics of lymphatic filarial parasites is essential for the rational planning of control strategies. One of the most important determinants of transmission dynamics is the relationship between parasite yield, the success rate of ingested microfilariae (mf) becoming infective larvae in a mosquito vector, and mf density in the source of the human blood meal. Three types of relationship have been recognized in human filaria/mosquito couples--limitation, facilitation and proportionality; facilitation has hitherto been observed only in the couple Wuchereria bancrofti/Anopheles gambiae in Burkina Faso, in experimental studies on a high density mf carrier. The present paper demonstrates facilitation in W. bancrofti/An. gambiae and W. bancrofti/An. arabiensis in lower mf density carriers in The Gambia and Tanzania, and in W. bancrofti/An. funestus in Tanzania. Facilitation was not found in An. melas in The Gambia nor in An. merus in Tanzania. Analysis of published data shows limitation at low level mf densities in W. bancrofti/Culex quinquefasciatus in Sri Lanka, and in the same couple in India. Limitation also occurs in Brugia malayi/Aedes togoi in experimental cats; proportionality occurs in B. malayi/Mansonia bonneae in Malaysia. The epidemiological significance of these host/parasite relationships is discussed, and supporting evidence for its validity is presented from the published results of large-scale control programmes.
Hematological changes were monitored in the leaf-monkey, Presbytis cristata, infected experimentally with 200 subperiodic Brugia malayi infective larvae. Prepatent periods were 54-86 days and peak microfilarial geometric mean counts (GMCs) were 1324 per ml blood. Total leukocyte and differential counts were measured at pre-infection, and then at weakly intervals before and during patency. Blood eosinophil level increased to about thrice the initial level at 3 weeks post-infection and this was maintained for the next 13 weeks before it started to rise again, increasing to more than 5 times the initial level at 20 weeks post-infection. The observed pattern of eosinophilia is probably related to the level of microfilaremia and the destruction of microfilariae in the spleen. There was no significant change in the total leukocyte counts during the period of observation.
R. sabanus and R. muelleri are very common in the lowland forests of Malaysia. In nature they are infected with Breinlia sp. and D. ramachandrani. In an attempt to determine whether they are also susceptible to subperiodic B. malayi and thereby being potential reservoirs of infection of the disease, 24 R. muelleri and 17 R. sabanus were experimentally infected with the parasite. Results show that although they can support the full development of the parasite, they are poor hosts. This confirms the observation that in Malaysia natural infection of Rattus spp. with the parasite has not been seen. These rats therefore are probably not important in the zoonotic transmission of subperiodic B. malayi in Malaysia.
The blood filtration method was used as the gold standard to determine the detection level of simple blood-spot sampling and nested-polymerase chain reaction (PCR) for Brugia malayi. Of 100 samples, 48 were filtration-positive. Of these, 26 had microfilaria counts that were low enough (<1-29 microfilariae/ml) to accurately assess the limit of detection by nested-PCR. Nested-PCR consistently detected B. malayi DNA in samples with > or = 10 microfilariae/ml. Post-filtration, microfilaria-depleted, blood-spots from microfilaria-positive samples were screened by nested-PCR and B. malayi specific 'free' DNA was detected in 51.7% of these samples. There was no evidence for 'free' DNA in microfilaria-negative individuals from this endemic community.
DEC or ivermectin (IVM) in combination with albendazole (ALB) has been the recommended strategy of the Global Programme to Eliminate Lymphatic Filariasis (GPELF) since 2000. Despite effective population coverage (> 65%) with several rounds of MDA with DEC or combination of DEC plus ALB, microfilariae persist in few individuals and they continue to be the source of infection for transmitting LF. We report an individual's variability in response to DEC by defining the response as complete absence of microfilaria (mf) (post-treatment mf count = 0) and non-response as presence of mf (post-treatment mf count ≥ 1). We analyzed follow-up data on individual's response to treatment from two randomized clinical trials in which 46 microfilaremic individuals were treated with single-dose DEC (6 mg/kg body weight). They were classified into low, medium, and high mf density categories based on their pre-treatment mf counts. Of the 46 individuals, 65.2% have not responded throughout the 12-month post-treatment period. Application of a logistic regression model with fixed (age, gender, mf density, post-treatment time, and their interactions) and random (individual's response over time) effects indicated that treatment response is independent of age, gender, and time. The overall treatment response increases in low and decreases in high mf density categories. Furthermore, the estimates for the random coefficients model showed that there is a greater variability in response between individuals over post-treatment time. The results substantiate that individual variation in response to DEC exists which indicate the importance of studying the parasite as well as host genetic factors associated with DEC action.
Histochemical demonstration of acid phosphatase activity in microfilariae gives sufficiently characteristic and consistent results for the differentiation of even closely related species. No difference could be detected among nocturnally periodic, nocturnally subperiodic and diurnally subperiodic Brugia malayi, but they could readily be distinguished from B. pahangi. Similarly, Dirofilaria repens could be readily distinguished from D. immitis and B. booliati from B. sergenti. The enzyme distribution pattern of a Malaysian rural strain of Wuchereria bancrofti was different from those of other regions.
This paper reports the experimental transmission of a bird parasite into jirds. Infective larvae of Cardiofilaria nilesi obtained from laboratory colonized Coquillettidia crassipes mosquitoes which had fed on an infected chicken were inoculated subcutaneously into jirds. The number of larvae per jird varied from 10 to 228. Microfilaraemia appeared 22 to 89 days after inoculation of the infective larvae. Experiments were carried out with 24 jirds through six generations extending over a period of 22 months and 17 produced patent infections. At present 8 infected jirds are being maintained in the laboratory; their patent periods ranging from 6 to 13 months. However, the longest patent period observed was about thirteen months. The percentage of adults recovered in autopsied jirds ranged from 0 to 40 with an average of 16. The chicken showed a microfilarial periodicity with the peak microfilarial density around 2200 hours. However, in jirds there was a change in sub-periodicity. This model in the jird may be very useful for the screening of filaricides and in immunological work.
Matched MeSH terms: Microfilaria/growth & development