Displaying all 3 publications

Abstract:
Sort:
  1. Kaneda T, Matsumoto M, Sotozono Y, Fukami S, Nugroho AE, Hirasawa Y, et al.
    J Nat Med, 2019 Jan;73(1):47-58.
    PMID: 30084054 DOI: 10.1007/s11418-018-1233-7
    We recently reported that (23R, 24E)-23-acetoxymangiferonic acid (23R-AMA), a cycloartane triterpenoid isolated by activity-guided separation from a methanol extract of Garcinia sp. bark, inhibited melanin production via inhibition of tyrosinase (TYR) expression in the B16-F10 melanoma cell line. Since 23R-AMA also inhibited microphthalmia-associated transcription factor (MITF) expression, an upstream factor of TYR, these features of 23R-AMA were thought to be appropriate for development of whitening cosmetics. However, 23R-AMA exhibited growth inhibition other than inhibition of melanin production in B16-F10 cells. Therefore, we investigated biological activities of 23R-AMA in detail, focused on its application as an anti-melanoma compound. In this study, we demonstrated that 23R-AMA inhibited cell proliferation and basic FGF (bFGF)-induced migration in B16-F10 cells. Furthermore, 23R-AMA promoted ser45/thr41 phosphorylation of β-catenin and suppressed its intranuclear accumulation, which was suggested to be related to inhibition of MITF expression. The transcriptional activity of MITF is known to be regulated by phosphorylation via activated ERK. Further investigation revealed that 23R-AMA inhibited phosphorylation of c-Raf, MEK-1, and ERK, and also that of upstream molecules including FAK and c-Src. These results suggested that 23R-AMA inhibited growth and migration of B16-F10 melanoma by regulating both MITF expression and its activity. The activities of 23R-AMA reported in this study are new aspects of cycloartane triterpenoids.
    Matched MeSH terms: Microphthalmia-Associated Transcription Factor/genetics*
  2. Oh MJ, Hamid MA, Ngadiran S, Seo YK, Sarmidi MR, Park CS
    Arch. Dermatol. Res., 2011 Apr;303(3):161-70.
    PMID: 20981431 DOI: 10.1007/s00403-010-1089-5
    Ficus deltoidea (Mas cotek) water extract has been widely used for woman health in Malaysia. Our investigation focused to identify anti-melanogenic efficacy of F. deltoidea since it has been known to have strong anti-oxidant activities. Anti-melanogenic effect of F. deltoidea extract was analyzed using cultured B16F1 melanoma cells. Cytotoxicity of the extract was measured using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and determined the highest concentration of the extract that did not affect cell viability as 0.1% (w/v). α-MSH-induced melanin synthesis was significantly inhibited with dose-dependent manner by treatment of F. deltoidea leave extract, which was comparable to that of kojic acid. The extract directly inhibited mushroom tyrosinase activity and intracellular tyrosinase activity of B16F1 as well. The inhibition of intracellular tyrosinase activity was found to be exerted at the protein expression level when analyzed by immunoblot and tyrosinase zymography. The expression of microphthalmia-associated transcription factor (MITF) was also reduced by the F. deltoidea extract. In conclusion, F. deltoidea extract has strong anti-melanogenic activity that is exerted by direct inhibition of tyrosinase enzyme activity and by down-regulation of the expression of genes involved in the melanogenesis pathways. Collectively, data shown in this study strongly suggest that F. deltoidea extract has potential to be used as a novel depigmenting agent for cosmetics.
    Matched MeSH terms: Microphthalmia-Associated Transcription Factor/genetics; Microphthalmia-Associated Transcription Factor/metabolism
  3. Mohd Sakeh N, Md Razip NN, Mohd Ma'in FI, Abdul Bahari MN, Latif N, Akhtar MN, et al.
    Molecules, 2020 Jul 28;25(15).
    PMID: 32731323 DOI: 10.3390/molecules25153403
    Excessive production of melanin implicates hyperpigmentation disorders. Flavokawain A (FLA) and flavokawain B (FLB) have been reported with anti-melanogenic activity, but their melanogenic inhibition and toxicity effects on the vertebrate model of zebrafish are still unknown. In the present study, cytotoxic as well as melanogenic effects of FLA and FLB on cellular melanin content and tyrosinase activity were evaluated in α-MSH-induced B16/F10 cells. Master regulator of microphthalmia-associated transcription factor (Mitf) and the other downstream melanogenic-related genes were verified via quantitative real time PCR (qPCR). Toxicity assessment and melanogenesis inhibition on zebrafish model was further observed. FLA and FLB significantly reduced the specific cellular melanin content by 4.3-fold and 9.6-fold decrement, respectively in α-MSH-induced B16/F10 cells. Concomitantly, FLA significantly reduced the specific cellular tyrosinase activity by 7-fold whilst FLB by 9-fold. The decrement of melanin production and tyrosinase activity were correlated with the mRNA suppression of Mitf which in turn down-regulate Tyr, Trp-1 and Trp-2. FLA and FLB exhibited non-toxic effects on the zebrafish model at 25 and 6.25 µM, respectively. Further experiments on the zebrafish model demonstrated successful phenotype-based depigmenting activity of FLA and FLB under induced melanogenesis. To sum up, our findings provide an important first key step for both of the chalcone derivatives to be further studied and developed as potent depigmenting agents.
    Matched MeSH terms: Microphthalmia-Associated Transcription Factor/metabolism
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links