Displaying all 5 publications

Abstract:
Sort:
  1. Walker P, Bremner JG, Lunghi M, Dolscheid S, D Barba B, Simion F
    Dev Psychobiol, 2018 03;60(2):216-223.
    PMID: 29355921 DOI: 10.1002/dev.21603
    Amodal (redundant) and arbitrary cross-sensory feature associations involve the context-insensitive mapping of absolute feature values across sensory domains. Cross-sensory associations of a different kind, known as correspondences, involve the context-sensitive mapping of relative feature values. Are such correspondences in place at birth (like amodal associations), or are they learned from subsequently experiencing relevant feature co-occurrences in the world (like arbitrary associations)? To decide between these two possibilities, human newborns (median age = 44 hr) watched animations in which two balls alternately rose and fell together in space. The pitch of an accompanying sound rose and fell either congruently with this visual change (pitch rising and falling as the balls moved up and down), or incongruently (pitch rising and falling as the balls moved down and up). Newborns' looking behavior was sensitive to this congruence, providing the strongest indication to date that cross-sensory correspondences can be in place at birth.
    Matched MeSH terms: Motion Perception/physiology*
  2. Yousefi B, Loo CK
    ScientificWorldJournal, 2014;2014:723213.
    PMID: 25276860 DOI: 10.1155/2014/723213
    Research on psychophysics, neurophysiology, and functional imaging shows particular representation of biological movements which contains two pathways. The visual perception of biological movements formed through the visual system called dorsal and ventral processing streams. Ventral processing stream is associated with the form information extraction; on the other hand, dorsal processing stream provides motion information. Active basic model (ABM) as hierarchical representation of the human object had revealed novelty in form pathway due to applying Gabor based supervised object recognition method. It creates more biological plausibility along with similarity with original model. Fuzzy inference system is used for motion pattern information in motion pathway creating more robustness in recognition process. Besides, interaction of these paths is intriguing and many studies in various fields considered it. Here, the interaction of the pathways to get more appropriated results has been investigated. Extreme learning machine (ELM) has been implied for classification unit of this model, due to having the main properties of artificial neural networks, but crosses from the difficulty of training time substantially diminished in it. Here, there will be a comparison between two different configurations, interactions using synergetic neural network and ELM, in terms of accuracy and compatibility.
    Matched MeSH terms: Motion Perception/physiology*
  3. Lee YM, Sheppard E
    Accid Anal Prev, 2016 Oct;95(Pt A):202-8.
    PMID: 27450792 DOI: 10.1016/j.aap.2016.07.011
    Failure in making the correct judgment about the intention of an approaching vehicle at a junction could lead to a collision. This paper investigated the impact of dynamic information on drivers' judgments about the intentions of approaching cars and motorcycles, and whether a valid or invalid signal was provided was also manipulated. Participants were presented with videoclips of vehicles approaching a junction which terminated immediately before the vehicle made any manoeuvre, or images of the final frame of each video. They were asked to judge whether or not the vehicle would turn. Drivers were better in judging the manoeuvre of approaching vehicles in dynamic than static stimuli, for both vehicle types. Drivers were better in judging the manoeuvre of cars than motorcycles for videos, but not for photographs. Drivers were also better in judging the manoeuvre of approaching vehicles when a valid signal was provided than an invalid signal, demonstrating the importance of providing a valid signal while driving. However, drivers were still somewhat successful in their judgments in most of the conditions with an invalid signal, suggesting that drivers were able to focus on other cues to intention. Finally, given that dynamic stimuli more closely reflect the demands of real-life driving there may be a need for drivers to adopt a more cautious approach while inferring a motorcyclist's intentions.
    Matched MeSH terms: Motion Perception*
  4. Yousefi B, Loo CK
    ScientificWorldJournal, 2014;2014:238234.
    PMID: 24883361 DOI: 10.1155/2014/238234
    Following the study on computational neuroscience through functional magnetic resonance imaging claimed that human action recognition in the brain of mammalian pursues two separated streams, that is, dorsal and ventral streams. It follows up by two pathways in the bioinspired model, which are specialized for motion and form information analysis (Giese and Poggio 2003). Active basis model is used to form information which is different from orientations and scales of Gabor wavelets to form a dictionary regarding object recognition (human). Also biologically movement optic-flow patterns utilized. As motion information guides share sketch algorithm in form pathway for adjustment plus it helps to prevent wrong recognition. A synergetic neural network is utilized to generate prototype templates, representing general characteristic form of every class. Having predefined templates, classifying performs based on multitemplate matching. As every human action has one action prototype, there are some overlapping and consistency among these templates. Using fuzzy optical flow division scoring can prevent motivation for misrecognition. We successfully apply proposed model on the human action video obtained from KTH human action database. Proposed approach follows the interaction between dorsal and ventral processing streams in the original model of the biological movement recognition. The attained results indicate promising outcome and improvement in robustness using proposed approach.
    Matched MeSH terms: Motion Perception
  5. Javed E, Faye I, Malik AS, Abdullah JM
    J Neurosci Methods, 2017 11 01;291:150-165.
    PMID: 28842191 DOI: 10.1016/j.jneumeth.2017.08.020
    BACKGROUND: Simultaneous electroencephalography (EEG) and functional magnetic resonance image (fMRI) acquisitions provide better insight into brain dynamics. Some artefacts due to simultaneous acquisition pose a threat to the quality of the data. One such problematic artefact is the ballistocardiogram (BCG) artefact.

    METHODS: We developed a hybrid algorithm that combines features of empirical mode decomposition (EMD) with principal component analysis (PCA) to reduce the BCG artefact. The algorithm does not require extra electrocardiogram (ECG) or electrooculogram (EOG) recordings to extract the BCG artefact.

    RESULTS: The method was tested with both simulated and real EEG data of 11 participants. From the simulated data, the similarity index between the extracted BCG and the simulated BCG showed the effectiveness of the proposed method in BCG removal. On the other hand, real data were recorded with two conditions, i.e. resting state (eyes closed dataset) and task influenced (event-related potentials (ERPs) dataset). Using qualitative (visual inspection) and quantitative (similarity index, improved normalized power spectrum (INPS) ratio, power spectrum, sample entropy (SE)) evaluation parameters, the assessment results showed that the proposed method can efficiently reduce the BCG artefact while preserving the neuronal signals.

    COMPARISON WITH EXISTING METHODS: Compared with conventional methods, namely, average artefact subtraction (AAS), optimal basis set (OBS) and combined independent component analysis and principal component analysis (ICA-PCA), the statistical analyses of the results showed that the proposed method has better performance, and the differences were significant for all quantitative parameters except for the power and sample entropy.

    CONCLUSIONS: The proposed method does not require any reference signal, prior information or assumption to extract the BCG artefact. It will be very useful in circumstances where the reference signal is not available.

    Matched MeSH terms: Motion Perception/physiology
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links