During the period 1979-1982, 70 strains of atypical mycobacteria isolated from clinical material were identified as belonging to species or species complex. Twenty-eight out of 61 strains isolated from pulmonary specimens were identified as M. avium-intracellulare. This frequency of association of M. avium-intracellulare with sputa of patients with pulmonary symptoms points to its potential importance and the need for further investigation.
Currently, there is a trend of increasing incidence in pulmonary non-tuberculous mycobacterial infections (PNTM) together with a decrease in tuberculosis (TB) incidence, particularly in developed countries. The prevalence of PNTM in underdeveloped and developing countries remains unclear as there is still a lack of detection methods that could clearly diagnose PNTM applicable in these low-resource settings. Since non-tuberculous mycobacteria (NTM) are environmental pathogens, the vicinity favouring host-pathogen interactions is known as important predisposing factor for PNTM. The ongoing changes in world population, as well as socio-political and economic factors, are linked to the rise in the incidence of PNTM. Development is an important factor for the improvement of population well-being, but it has also been linked, in general, to detrimental environmental consequences, including the rise of emergent (usually neglected) infectious diseases, such as PNTM. The rise of neglected PNTM infections requires the expansion of the current efforts on the development of diagnostics, therapies and vaccines for mycobacterial diseases, which at present, are mainly focused on TB. This review discuss the current situation of PNTM and its predisposing factors, as well as the efforts and challenges for their control.
Mycobacteriosis due to mycobacteria is one of the most common bacterial diseases in ornamental fish. We describe here the phenotypic and genotypic characteristics of Mycobacterium isolates from fighting fish Betta spp. using ATCC Mycobacterium marinum, Mycobacterium fortuitum and Mycobacterium chelonae as references. A total of four isolates (M1, M2, M3, M4) were obtained from four out of 106 fish samples using selective agar, and identified to Mycobacterium genus using acid-fast staining and 16s rRNA gene-based genus specific polymerase chain reaction. DNA sequencing and NCBI-BLAST analysis further identified isolate M1 as M. marinum and isolates M2, M3, M4 as M. fortuitum. Morphological, physiological and biochemical tests were carried out for phenotypic characterizations. Universal M13 and wild-type phage M13 RAPD dendogram was generated to illustrate the genetic relationship of the isolates and reference strains.
Rapidly growing, non-tuberculous mycobacteria (NTM) in the Mycobacterium abscessus (MAB) species are emerging pathogens that cause various diseases including skin and respiratory infections. The species has undergone recent taxonomic nomenclature refinement, and is currently recognized as two subspecies, M. abscessus subsp. abscessus (MAB-A) and M. abscessus subsp. bolletii (MAB-B). The recently reported outbreaks of MAB-B in surgical patients in Brazil from 2004 to 2009 and in cystic fibrosis patients in the United Kingdom (UK) in 2006 to 2012 underscore the need to investigate the genetic diversity of clinical MAB strains. To this end, we sequenced the genomes of two Brazilian MAB-B epidemic isolates (CRM-0019 and CRM-0020) derived from an outbreak of skin infections in Rio de Janeiro, two unrelated MAB strains from patients with pulmonary infections in the United States (US) (NJH8 and NJH11) and one type MAB-B strain (CCUG 48898) and compared them to 25 publically available genomes of globally diverse MAB strains. Genome-wide analyses of 27,598 core genome single nucleotide polymorphisms (SNPs) revealed that the two Brazilian derived CRM strains are nearly indistinguishable from one another and are more closely related to UK outbreak isolates infecting CF patients than to strains from the US, Malaysia or France. Comparative genomic analyses of six closely related outbreak strains revealed geographic-specific large-scale insertion/deletion variation that corresponds to bacteriophage insertions and recombination hotspots. Our study integrates new genome sequence data with existing genomic information to explore the global diversity of infectious M. abscessus isolates and to compare clinically relevant outbreak strains from different continents.