Parkinson's disease (PD) is a neurodegenerative disorder defined by progressive deterioration of dopaminergic neurons in the substantia nigra pars compacta (SNpc). Dental pulp stem cells (DPSCs) have been proposed to replace the degenerated dopaminergic neurons due to its inherent neurogenic and regenerative potential. However, the effective delivery and homing of DPSCs within the lesioned brain has been one of the many obstacles faced in cell-based therapy of neurodegenerative disorders. We hypothesized that DPSCs, delivered intranasally, could circumvent these challenges. In the present study, we investigated the therapeutic efficacy of intranasally administered DPSCs in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse model of PD. Human deciduous DPSCs were cultured, pre-labelled with PKH 26, and intranasally delivered into PD mice following MPTP treatment. Behavioural analyses were performed to measure olfactory function and sensorimotor coordination, while tyrosine hydroxylase (TH) immunofluorescence was used to evaluate MPTP neurotoxicity in SNpc neurons. Upon intranasal delivery, degenerated TH-positive neurons were ameliorated, while deterioration in behavioural performances was significantly enhanced. Thus, the intranasal approach enriched cell delivery to the brain, optimizing its therapeutic potential through its efficacious delivery and protection against dopaminergic neuron degeneration.
Matched MeSH terms: Pars Compacta/cytology*; Pars Compacta/metabolism
Parkinson's disease (PD) is the second most common neurodegenerative disease worldwide. It affects the locomotor system, leading to a final severe disability through degeneration of dopaminergic neurons. Despite several therapeutic approaches used, no treatment has been proven to be effective; however, cell therapy may be a promising therapeutic method. In addition, the use of the intranasal (IN) route has been advocated for delivering various therapies to the brain. In the present study, the IN route was used for administration of mesenchymal stem cells (MSCs) in a mouse model of PD, with the aim to evaluate IN delivery as an alternative route for cell based therapy administration in PD. The PD model was developed in C57BL/6 mice using intraperitoneal rotenone administration for 60 consecutive days. MSCs were isolated from the mononuclear cell fraction of pooled bone marrow from C57BL/6 mice and incubated with micrometer-sized iron oxide (MPIO) particles. For IN administration, we used a 20 µl of 5×10(5) cell suspension. Neurobehavioral assessment of the mice was performed, and after sacrifice, brain sections were stained with Prussian blue to detect the MPIO-labeled MSCs. In addition, immunohistochemical evaluation was conducted to detect tyrosine hydroxylase (TH) antibodies in the corpus striatum and dopaminergic neurons in the substantia nigra pars compacta (SNpc). The neurobehavioral assessment revealed progressive deterioration in the locomotor functions of the rotenone group, which was improved following MSC administration. Histopathological evaluation of brain sections in the rotenone+MSC group revealed successful delivery of MSCs, evidenced by positive Prussian blue staining. Furthermore, rotenone treatment led to significant decrease in dopaminergic neuron number in SNpc, as well as similar decrease in the corpus striatum fiber density. By contrast, in animals receiving IN administration of MSCs, the degeneration caused by rotenone treatment was significantly counteracted. In conclusion, the present study validated that IN delivery of MSCs may be a potential safe, easy and cheap alternative route for stem cell treatment in neurodegenerative disorders.
Parkinson's disease (PD) is a severely debilitating neurodegenerative disease, affecting the motor system, leading to resting tremor, cogwheel rigidity, bradykinesia, walking and gait difficulties, and postural instability. The severe loss of dopaminergic neurons in the substantia nigra pars compacta causes striatal dopamine deficiency and the presence of Lewy bodies indicates a pathological hallmark of PD. Although the current treatment of PD aims to preserve dopaminergic neurons or to replace dopamine depletion in the brain, it is notable that complete recovery from the disease is yet to be achieved. Given the complexity and multisystem effects of PD, the underlying mechanisms of PD pathogenesis are yet to be elucidated. The advancement of medical technologies has given some insights in understanding the mechanism and potential treatment of PD with a special interest in the role of microRNAs (miRNAs) to unravel the pathophysiology of PD. In PD patients, it was found that striatal brain tissue and dopaminergic neurons from the substantia nigra demonstrated dysregulated miRNAs expression profiles. Hence, dysregulation of miRNAs may contribute to the pathogenesis of PD through modulation of PD-associated gene and protein expression. This review will discuss recent findings on PD-associated miRNAs dysregulation, from the regulation of PD-associated genes, dopaminergic neuron survival, α-synuclein-induced inflammation and circulating miRNAs. The next section of this review also provides an update on the potential uses of miRNAs as diagnostic biomarkers and therapeutic tools for PD.