Displaying all 4 publications

Abstract:
Sort:
  1. Haron MN, Mohamed M
    Andrologia, 2016 Jun;48(5):525-31.
    PMID: 26289766 DOI: 10.1111/and.12473
    Exposure to prenatal stress is associated with impaired reproductive function in male rat offspring. Honey is traditionally used by the Malays for enhancement of fertility. The aim of this study was to determine the effect of honey on reproductive system of male rat offspring exposed to prenatal restraint stress. Dams were divided into four groups (n = 10/group): control, honey, stress and honey + stress groups. Dams from honey and honey + stress groups received oral honey (1.2 g kg(-1) body weight) daily from day 1 of pregnancy, meanwhile dams from stress and honey + stress groups were subjected to restraint stress (three times per day) from day 11 of pregnancy until delivery. At 10 weeks old, each male rat offspring was mated with a regular oestrus cycle female. Male sexual behaviour and reproductive performance were evaluated. Then, male rats were euthanised for assessment on reproductive parameters. Honey supplementation during prenatal restraint stress significantly increased testis and epididymis weights as well as improved the percentages of abnormal spermatozoa and sperm motility in male rat offspring. In conclusion, this study might suggest that supplementation of honey during pregnancy seems to reduce the adverse effects of restraint stress on reproductive organs weight and sperm parameters in male rat offspring.
    Matched MeSH terms: Prenatal Exposure Delayed Effects/physiopathology*
  2. Abd Aziz CB, Ahmad Suhaimi SQ, Hasim H, Ahmad AH, Long I, Zakaria R
    J Integr Med, 2019 Jan;17(1):66-70.
    PMID: 30591413 DOI: 10.1016/j.joim.2018.12.002
    OBJECTIVE: This study was done to determine whether Tualang honey could prevent the altered nociceptive behaviour, with its associated changes of oxidative stress markers and morphology of the spinal cord, among the offspring of prenatally stressed rats.

    METHODS: Pregnant rats were divided into three groups: control, stress, and stress treated with Tualang honey. The stress and stress treated with Tualang honey groups were subjected to restraint stress from day 11 of pregnancy until delivery. Ten week old male offspring (n = 9 from each group) were given formalin injection and their nociceptive behaviours were recorded. After 2 h, the rats were sacrificed, and their spinal cords were removed to assess oxidative stress activity and morphology. Nociceptive behaviour was analysed using repeated measures analysis of variance (ANOVA), while the levels of oxidative stress parameters and number of Nissl-stained neurons were analysed using a one-way ANOVA.

    RESULTS: This study demonstrated that prenatal stress was associated with increased nociceptive behaviour, changes in the oxidative stress parameters and morphology of the spinal cord of offspring exposed to prenatal stress; administration of Tualang honey reduced the alteration of these parameters.

    CONCLUSION: This study provides a preliminary understanding of the beneficial effects of Tualang honey against the changes in oxidative stress and neuronal damage in the spinal cord of the offspring of prenatally stressed rats.

    Matched MeSH terms: Prenatal Exposure Delayed Effects/physiopathology*
  3. Muller I, Taylor PN, Daniel RM, Hales C, Scholz A, Candler T, et al.
    J Clin Endocrinol Metab, 2020 07 01;105(7).
    PMID: 32396189 DOI: 10.1210/clinem/dgaa129
    CONTEXT AND OBJECTIVES: The Controlled Antenatal Thyroid Screening Study I (CATS-I) was a randomized controlled trial investigating the effects of levothyroxine therapy for suboptimal gestational thyroid function (SGTF), comparing outcomes in children of treated (SGTF-T) with untreated (SGTF-U) women during pregnancy. This follow-up study, CATS-II, reports the long-term effects on anthropometric, bone, and cardiometabolic outcomes in mothers and offspring and includes a group with normal gestational thyroid function (NGTF).

    DESIGN & PARTICIPANTS: 332 mothers (197 NGTF, 56 SGTF-U, 79 SGTF-T) aged 41.2±5.3 years (mean±SD) and 326 paired children assessed 9.3±1.0 years after birth for (i) body mass index (BMI); (ii) lean, fat, and bone mass by dual-energy X-ray absorptiometry; (iii) blood pressure, augmentation index, and aortic pulse-wave-velocity; and (iv) thyroid function, lipids, insulin, and adiponectin. The difference between group means was compared using linear regression.

    RESULTS: Offspring's measurements were similar between groups. Although maternal BMI was similar between groups at CATS-I, after 9 years (at CATS-II) SGTF-U mothers showed higher BMI (median [interquartile ratio] 28.3 [24.6-32.6] kg/m2) compared with NGTF (25.8 [22.9-30.0] kg/m2; P = 0.029), driven by fat mass increase. At CATS-II SGTF-U mothers also had higher thyroid-stimulating hormone (TSH) values (2.45 [1.43-3.50] mU/L) than NGTF (1.54 [1.12-2.07] mU/L; P = 0.015), since 64% had never received levothyroxine. At CATS-II, SGTF-T mothers had BMI (25.8 [23.1-29.8] kg/m2, P = 0.672) and TSH (1.68 [0.89-2.96] mU/L; P = 0.474) values similar to NGTF mothers.

    CONCLUSIONS: Levothyroxine supplementation of women with SGTF did not affect long-term offspring anthropometric, bone, and cardiometabolic measurements. However, absence of treatment was associated with sustained long-term increase in BMI and fat mass in women with SGTF.

    Matched MeSH terms: Prenatal Exposure Delayed Effects/physiopathology*
  4. Jayachandra S, D'Souza UJ
    J Environ Sci Health B, 2014;49(4):271-8.
    PMID: 24502214 DOI: 10.1080/03601234.2014.868287
    The objective of this research is to study the possible reproductive adverse effects of diazinon on rat offspring exposed in utero and during lactation. Twenty-four Sprague-Dawley female rats (10-12 week old) were randomly assigned to four groups, each consisting of six rats. Group 1 served as the control and these rats were given normal saline orally. Rats in groups 2, 3, and 4 were administered diazinon, dissolved in saline at 10, 15, 30 mg/ kg(-1) body weight, per oral, once daily, during mating, pregnancy and lactation. The male offsprings were examined at puberty and adulthood for body weight, testis weight, epididymis weight, sperm count, motility and morphology, pituitary-gonadal hormone levels. At 30 mg kg(-1) dose, the male offsprings showed a decrease in testicular weight, sperm count, motility, with an increase in abnormal sperm percentage and a decline in pituitary-gonadal hormones, at puberty. Upon attaining adulthood, there was a decrease in testicular weight, sperm count and motility with an increase in abnormal sperm percentage and a decrease in pituitary hormone level. There was evidence of some adverse reproductive effects on the male offspring at the 15 mg/ kg(-1) dose. Most of the adverse effects were irreversible and were evident at both puberty and adulthood in the offsprings, although a few parameters reverted to the normal growth pattern. Diazinon is a reproductive toxicant for male offsprings if exposed during prenatal and postnatal phases.
    Matched MeSH terms: Prenatal Exposure Delayed Effects/physiopathology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links