Displaying all 4 publications

Abstract:
Sort:
  1. Lawson T, Mayes S, Lycett GW, Chin CF
    Biotechnol Genet Eng Rev, 2018 Oct;34(2):181-197.
    PMID: 29902948 DOI: 10.1080/02648725.2018.1482092
    Fruit ripening is a complex developmental process that involves the synthesis and modification of the cell wall leading up to the formation of an edible fruit. During the period of fruit ripening, new cell wall polymers and enzymes are synthesized and trafficked to the apoplast. Vesicle trafficking has been shown to play a key role in facilitating the synthesis and modification of cell walls in fruits. Through reverse genetics and gene expression studies, the importance of Rab guanosine triphosphatases (GTPases) as integral regulators of vesicle trafficking to the cell wall has been revealed. It has been a decade since a rich literature on the involvement of Rab GTPase in ripening was published. Therefore, this review sets out to summarize the progress in studies on the pivotal roles of Rab GTPases in fruit development and sheds light on new approaches that could be adopted in the fields of postharvest biology and fruit-ripening research.
    Matched MeSH terms: rab GTP-Binding Proteins
  2. Lawson T, Lycett GW, Mayes S, Ho WK, Chin CF
    Mol Biol Rep, 2020 Jun;47(6):4183-4197.
    PMID: 32444976 DOI: 10.1007/s11033-020-05519-y
    The Rab GTPase family plays a vital role in several plant physiological processes including fruit ripening. Fruit softening during ripening involves trafficking of cell wall polymers and enzymes between cellular compartments. Mango, an economically important fruit crop, is known for its delicious taste, exotic flavour and nutritional value. So far, there is a paucity of information on the mango Rab GTPase family. In this study, 23 genes encoding Rab proteins were identified in mango by a comprehensive in silico approach. Sequence alignment and similarity tree analysis with the model plant Arabidopsis as a reference enabled the bona fide assignment of the deduced mango proteins to classify into eight subfamilies. Expression analysis by RNA-Sequencing (RNA-Seq) showed that the Rab genes were differentially expressed in ripe and unripe mangoes suggesting the involvement of vesicle trafficking during ripening. Interaction analysis showed that the proteins involved in vesicle trafficking and cell wall softening were interconnected providing further evidence of the involvement of the Rab GTPases in fruit softening. Correlation analyses showed a significant relationship between the expression level of the RabA3 and RabA4 genes and fruit firmness at the unripe stage of the mango varieties suggesting that the differences in gene expression level might be associated with the contrasting firmness of these varieties. This study will not only provide new insights into the complexity of the ripening-regulated molecular mechanism but also facilitate the identification of potential Rab GTPases to address excessive fruit softening.
    Matched MeSH terms: rab GTP-Binding Proteins/analysis*; rab GTP-Binding Proteins/genetics*
  3. Hassan R, Othman N, Mansor SM, Müller CP, Hassan Z
    Brain Res Bull, 2021 07;172:139-150.
    PMID: 33901587 DOI: 10.1016/j.brainresbull.2021.04.018
    Mitragyna speciosa, also known as kratom, has been used for mitigating the severity of opioid withdrawal in humans. Its main indole alkaloid, mitragynine, has been considered as a pharmacotherapy for pain conditions and opioid replacement therapy. However, at high doses, chronic mitragynine may also have an addiction potential. The effects of chronic action of mitragynine in the brain are still unknown. The present study developed a mitragynine withdrawal model in rats and used it for a proteomic analysis of mitragynine withdrawal effects. Mitragynine (30 mg/kg, i.p.) was administered daily over a period of 14 days and then withdrawn. A proteomic analysis revealed that from a total of 1524 proteins identified, 31 proteins were upregulated, and 3 proteins were downregulated in the mitragynine withdrawal model. The Rab35 protein expression increased most profoundly in the mitragynine withdrawal group as compared to vehicle group. Therefore, it is proposed that Rab35 in the brain might be considered as a potential biomarker during mitragynine withdrawal and might be valuable target protein in developing new pharmacotherapies in the future.
    Matched MeSH terms: rab GTP-Binding Proteins/metabolism*
  4. Mehrbod P, Hair-Bejo M, Tengku Ibrahim TA, Omar AR, El Zowalaty M, Ajdari Z, et al.
    Int J Mol Med, 2014 Jul;34(1):61-73.
    PMID: 24788303 DOI: 10.3892/ijmm.2014.1761
    Influenza A virus is one of the most important health risks that lead to significant respiratory infections. Continuous antigenic changes and lack of promising vaccines are the reasons for the unsuccessful treatment of influenza. Statins are pleiotropic drugs that have recently served as anti-influenza agents due to their anti-inflammatory activity. In this study, the effect of simvastatin on influenza A-infected cells was investigated. Based on the MTT cytotoxicity test, hemagglutination (HA) assay and qPCR it was found that simvastatin maintained cell viability and decreased the viral load significantly as compared to virus-inoculated cells. The expression of important pro-inflammatory cytokines (tumor necrosis factor-α, interleukin-6 and interferon-γ), which was quantified using ELISA showed that simvastatin decreased the expression of pro-inflammatory cytokines to an average of 2-fold. Furthermore, the modulation of actin filament polymerization was determined using rhodamine staining. Endocytosis and autophagy processes were examined by detecting Rab and RhoA GTPase protein prenylation and LC3 lipidation using western blotting. The results showed that inhibiting GTPase and LC3 membrane localization using simvastatin inhibits influenza replication. Findings of this study provide evidence that modulation of RhoA, Rabs and LC3 may be the underlying mechanisms for the inhibitory effects of simvastatin as an anti-influenza compound.
    Matched MeSH terms: rab GTP-Binding Proteins/genetics; rab GTP-Binding Proteins/metabolism
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links