Displaying all 3 publications

Abstract:
Sort:
  1. Ibraheem ZO, Sattar MA, Abdullah NA, Rathore HA, Johns EJ
    Bosn J Basic Med Sci, 2012 Feb;12(1):26-32.
    PMID: 22364300
    The current study evaluates the impact of high saturated fat feeding in rat model of experimental nephrotoxicity induced by gentamicin. Sprague-Dawley rats weighing 200 g were randomized into four groups; the first one received the standard rodents chow for 8 weeks and was treated as control, the second group (HFD)received an experimental high fat diet rich in palm kernel oil (40% of Calories as fat) for the same period. The third group (HFDG) was given 80 mg/kg (body weight)/day gentamicin sulphate intraperitoneally during the last 24 days of the feeding period while the fourth group was given gentamicin as above along with the standard rodents chow. Renal function was assessed through measuring serum creatinine, creatinine clearance and absolute and fractional excretion of both sodium and potassium. At the end, rats underwent a surgical procedure for blood pressure measurement. Renal function study showed a stronger nephrotoxicity for HFDG group. Hypertension was observed in HFD group while the pressure declined after gentamicin co-administration. Overall, changing the feeding behavior toward using more SAFFAs for rats injected with gentamicin promotes the progression of renal failure.
    Matched MeSH terms: Renal Insufficiency/pathology
  2. Hye Khan MA, Abdul Sattar M, Abdullah NA, Johns EJ
    Exp. Toxicol. Pathol., 2007 Nov;59(3-4):253-60.
    PMID: 17764917
    The pathogenesis of cisplatin-induced renal failure is related to reduced renal blood flow due to severe tubular damage and enhanced renovascular resistance. It is also known that alpha(1)-adrenoceptors, the major subtype of alpha-adrenoceptors in renal vasculature play the pivotal role in regulating renal hemodynamics. With this background, we have hypothesized that the altered renal hemodynamics and enhanced renovascular resistance in cisplatin-induced renal failure might be caused by the altered alpha-adrenergic responsiveness with a possible involvement of alpha(1)-adrenoceptors in the renal vasculature. In a unique experimental approach with anesthetized rats, this study has therefore examined if there is any shift in the renovascular responsiveness to renal nerve stimulation and a series of alpha-adrenergic agonists in Wistar Kyoto (WKY) and spontaneously hypertensive (SHR) rats with cisplatin-induced renal failure in comparison with their body weight-matched normal controls. Thirty-two male rats of both WKY (n=16) and SHR (n=16) origin with body weight 236+/-7.9 g received cisplatin (5mg/kg i.p.). The renal failure was confirmed in terms of significantly reduced renal blood flow, reduced creatinine clearance, increased fractional excretion of sodium, increased kidney index (all P<0.05) and tubular damage. After 7 days of cisplatin, the overnight fasted rats were anesthetized (sodium pentobarbitone, 60 mg/kg i.p.) and renal vasoconstrictor experiments were done. The changes in the vasoconstrictor responses were determined in terms of reductions in renal blood flow caused by electrical renal nerve stimulation or intrarenal administration of noradrenaline, phenylephrine and methoxamine. It was observed that in the cisplatin-treated renal failure WKY and SHR rats there were significant (all P<0.05) reductions in the renal blood flow along with significantly (P<0.05) higher renal adrenergic responsiveness as compared with their non-renal failure controls. The data showed that in the renal failure WKY and SHR rats, the altered renal hemodynamics might be caused by an augmented renal adrenergic responsiveness. The results obtained further led us to suggest that the augmented renal adrenergic responsiveness in the cisplatin-induced renal failure rats were possibly mediated by the alpha(1)-adrenoceptors.
    Matched MeSH terms: Renal Insufficiency/pathology
  3. Chaisakul J, Alsolaiss J, Charoenpitakchai M, Wiwatwarayos K, Sookprasert N, Harrison RA, et al.
    PLoS Negl Trop Dis, 2019 10;13(10):e0007338.
    PMID: 31644526 DOI: 10.1371/journal.pntd.0007338
    BACKGROUND: Daboia siamensis (Eastern Russell's viper) is a medically important snake species found widely distributed across Southeast Asia. Envenomings by this species can result in systemic coagulopathy, local tissue injury and/or renal failure. While administration of specific antivenom is an effective treatment for Russell's viper envenomings, the availability of, and access to, geographically-appropriate antivenom remains problematic in many rural areas. In this study, we determined the binding and neutralizing capability of antivenoms manufactured by the Thai Red Cross in Thailand against D. siamensis venoms from four geographical locales: Myanmar, Taiwan, China and Thailand.

    METHODOLOGY/PRINCIPLE FINDINGS: The D. siamensis monovalent antivenom displayed extensive recognition and binding to proteins found in D. siamensis venom, irrespective of the geographical origin of those venoms. Similar immunological characteristics were observed with the Hemato Polyvalent antivenom, which also uses D. siamensis venom as an immunogen, but binding levels were dramatically reduced when using comparator monovalent antivenoms manufactured against different snake species. A similar pattern was observed when investigating neutralization of coagulopathy, with the procoagulant action of all four geographical venom variants neutralized by both the D. siamensis monovalent and the Hemato Polyvalent antivenoms, while the comparator monovalent antivenoms were ineffective. These in vitro findings translated into therapeutic efficacy in vivo, as the D. siamensis monovalent antivenom was found to effectively protect against the lethal effects of all four geographical venom variants preclinically. Assessments of in vivo nephrotoxicity revealed that D. siamensis venom (700 μg/kg) significantly increased plasma creatinine and blood urea nitrogen levels in anaesthetised rats. The intravenous administration of D. siamensis monovalent antivenom at three times higher than the recommended scaled therapeutic dose, prior to and 1 h after the injection of venom, resulted in reduced levels of markers of nephrotoxicity and prevented renal morphological changes, although lower doses had no therapeutic effect.

    CONCLUSIONS/SIGNIFICANCE: This study highlights the potential broad geographical utility of the Thai D. siamensis monovalent antivenom for treating envenomings by the Eastern Russell's viper. However, only the early delivery of high antivenom doses appears to be capable of preventing venom-induced nephrotoxicity.

    Matched MeSH terms: Renal Insufficiency/pathology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links