Displaying all 4 publications

Abstract:
Sort:
  1. Goh YL, Yasin R, Puthucheary SD, Koh YT, Lim VK, Taib Z, et al.
    J Appl Microbiol, 2003;95(5):1134-42.
    PMID: 14633043
    DNA fingerprinting of Salmonella enterica serotype Paratyphi B isolated in Malaysia during 1982-83, 1992 and 1996-2002 was carried out by pulsed-field gel electrophoresis (PFGE), antimicrobial susceptibility tests and D-tartrate utilization tests to assess the extent of genetic diversity of these isolates in Malaysia.
    Matched MeSH terms: Salmonella paratyphi B/genetics*
  2. Ahmad N, Hoon ST, Ghani MK, Tee KY
    Malays J Pathol, 2012 Jun;34(1):35-9.
    PMID: 22870596 MyJurnal
    Serotyping is not sufficient to differentiate between Salmonella species that cause paratyphoid fever from the strains that cause milder gastroenteritis as these organisms share the same serotype Salmonella Paratyphi B (S. Paratyphi B). Strains causing paratyphoid fever do not ferment d-tartrate and this key feature was used in this study to determine the prevalence of these strains among the collection of S. Paratyphi B strains isolated from patients in Malaysia. A total of 105 isolates of S. Paratyphi B were discriminated into d-tartrate positive (dT+) and d-tartrate negative (dT) variants by two lead acetate test protocols and multiplex PCR. The lead acetate test protocol 1 differed from protocol 2 by a lower inoculum size and different incubation conditions while the multiplex PCR utilized 2 sets of primers targeting the ATG start codon of the gene STM3356. Lead acetate protocol 1 discriminated 97.1% of the isolates as S. Paratyphi B dT+ and 2.9% as dT while test protocol 2 discriminated all the isolates as S. Paratyphi B dT+. The multiplex PCR test identified all 105 isolates as S. Paratyphi B dT+ strains. The concordance of the lead acetate test relative to that of multiplex PCR was 97.7% and 100% for protocol 1 and 2 respectively. This study showed that S. Paratyphi B dT+ is a common causative agent of gastroenteritis in Malaysia while paratyphoid fever appears to be relatively uncommon. Multiplex PCR was shown to be a simpler, more rapid and reliable method to discriminate S. Paratyphi B than the phenotypic lead acetate test.
    Matched MeSH terms: Salmonella paratyphi B/genetics
  3. Thong KL, Ang CP
    PMID: 22299444
    Abstract. Salmonella enterica serovar Paratyphi B is known to cause either paratyphoid fever or gastroenteritis. Differentiation of Salmonella ser. Paratyphi B into biotype Java (d-tartrate fermenting, dT+) and biotype Paratyphi B (d-tartrate non-fermenting, dT) is important for Salmonella epidemiology. This study applied a PCR approach to differentiate the two biotypes to augment the conventional biochemical method and to determine the antibiograms and genomic diversity of Malaysian S. Paratyphi B. Among 100 strains tested (clinical, 86; non-humans, 14), only two clinical strains were confirmed as biotype Paratyphi B as indicated by both lead acetate test and PCR. Antibiotic resistance rates were as follows: streptomycin 18%, sulphonamides 13%, ampicillin 10%, chloramphenicol 4%, tetracycline 3%, cefotaxime 2%, cefpodoxime 2%, ceftazidime 2%, gentamicin 1% and trimethoprim 1%. None showed resistance towards amoxicillin-clavulanic acid, ceftiofur, ciprofloxacin, nalidixic acid and trimethoprim-sulphamethoxazole. Seven strains showed multidrug resistance towards 3 or more classes of antimicrobial agents. REP-PCR and PFGE generated 32 and 76 different profiles, respectively. PFGE (D = 0.99) was more discriminative than REP-PCR (D = 0.93) and antimicrobial susceptibility test (D = 0.48) in subtyping the strains. Strains isolated 18 years apart (1982 - 2008) from different localities in Malaysia were clonally related as demonstrated by REP-PCR and PFGE, indicating that these strains were stable and widely distributed. In some clusters, strains isolated from different sources (clinical, food and animal) were grouped together. Thus, biotype Java was the most common biotype of Salmonella ser. Paratyphi B in Malaysia. The PCR approach is highly recommended due to its simplicity, specificity and ease of operation. The level of antimicrobial resistance among Salmonella ser. Paratyphi B remained relatively low in Malaysia but the emergence of resistance to cephalosporins is a cause for concern.
    Matched MeSH terms: Salmonella paratyphi B/genetics*
  4. Abatcha MG, Effarizah ME, Rusul G
    Int J Food Microbiol, 2019 Feb 02;290:180-183.
    PMID: 30342248 DOI: 10.1016/j.ijfoodmicro.2018.09.021
    Salmonella enterica serovar Paratyphi B (S. Paratyphi B) is a major foodborne pathogen distributed all over the world. However, little is known about the antibiotic resistance, genetic relatedness and virulence profile of S. Paratyphi B isolated from leafy vegetables and the processing environment in Malaysia. In this study, 6 S. Paratyphi B isolates were recovered from different vegetables and drain water of processing areas obtained from fresh food markets in Malaysia. The isolates were characterized by antibiogram, Pulsed-field gel electrophoresis (PFGE) and virulence genes. Antibiotic susceptibility test showed that 3 of the isolates were resistant to the antibiotics. These include S. Paratyphi B SP251 isolate, which was resistant to chloramphenicol, ampicillin, sulfonamides and streptomycin; Isolate SP246 which was resistant to chloramphenicol, sulfonamides and streptomycin and Isolate SP235 showing resistance to nalidixic acid only. PFGE subtyped the 6 S. Paratyphi B isolates into 6 distinct XbaI-pulsotypes, with a wide range of genetic similarity (0.55 to 0.9). The isolates from different sources and fresh food markets location were genetically diverse. Thirteen (tolC, orgA, spaN, prgH, sipB, invA, pefA, sofB, msgA, cdtB, pagC, spiA and spvB) out of the 17 virulence genes tested were found in all of the S. Paratyphi B isolates. Another gene (lpfC), was found only in one isolate (SP051). None of the isolates possessed sifA, sitC and ironN genes. In summary, this study provides unique information on antibiotic resistance, genetic relatedness, and virulotyping of S. Paratyphi B isolated from leafy vegetables and processing environment.
    Matched MeSH terms: Salmonella paratyphi B/genetics*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links