Displaying all 3 publications

Abstract:
Sort:
  1. Rahman SH, Choudhury JP, Ahmad AL, Kamaruddin AH
    Bioresour Technol, 2007 Feb;98(3):554-9.
    PMID: 16647852
    Oil palm empty fruit bunch fiber is a lignocellulosic waste from palm oil mills. It is a potential source of xylose which can be used as a raw material for production of xylitol, a high value product. The increasing interest on use of lignocellulosic waste for bioconversion to fuels and chemicals is justifiable as these materials are low cost, renewable and widespread sources of sugars. The objective of the present study was to determine the effect of H(2)SO(4) concentration, reaction temperature and reaction time for production of xylose. Batch reactions were carried out under various reaction temperature, reaction time and acid concentrations and Response Surface Methodology (RSM) was followed to optimize the hydrolysis process in order to obtain high xylose yield. The optimum reaction temperature, reaction time and acid concentration found were 119 degrees C, 60 min and 2%, respectively. Under these conditions xylose yield and selectivity were found to be 91.27% and 17.97 g/g, respectively.
    Matched MeSH terms: Xylose/chemistry*
  2. Wan Azelee NI, Md Jahim J, Rabu A, Abdul Murad AM, Abu Bakar FD, Md Illias R
    Carbohydr Polym, 2014 Jan;99:447-53.
    PMID: 24274529 DOI: 10.1016/j.carbpol.2013.08.043
    The enhancement of lignocellulose hydrolysis using enzyme complexes requires an efficient pretreatment process to obtain susceptible conditions for the enzyme attack. This study focuses on removing a major part of the lignin layer from kenaf (Hibiscus cannabinus) while simultaneously maintaining most of the hemicellulose. A two-stage pretreatment process is adopted using calcium hydroxide, Ca(OH)₂, and peracetic acid, PPA, to break the recalcitrant lignin layer from other structural polysaccharides. An experimental screening of several pretreatment chemicals, concentrations, temperatures and solid-liquid ratios enabled the production of an optimally designed pretreatment process for kenaf. Our results showed that the pretreatment process has provide 59.25% lignin removal while maintaining 87.72% and 96.17% hemicellulose and cellulose, respectively, using 1g of Ca(OH)₂/L and a 8:1 (mL:g) ratio of liquid-Ca(OH)₂ at 50 °C for 1.5 h followed by 20% peracetic acid pretreatment at 75 °C for 2 h. These results validate this mild approach for aiding future enzymatic hydrolysis.
    Matched MeSH terms: Xylose/chemistry*
  3. Rafiqul IS, Sakinah AM, Zularisam AW
    Appl Biochem Biotechnol, 2015 Jun;176(4):1071-83.
    PMID: 25904039 DOI: 10.1007/s12010-015-1630-2
    Xylose-rich sawdust hydrolysate can be an economic substrate for the enzymatic production of xylitol, a specialty product. It is important to identify the process factors influencing xylitol production. This research aimed to screen the parameters significantly affecting bioxylitol synthesis from wood sawdust by xylose reductase (XR). Enzymatic bioxylitol production was conducted to estimate the effect of different variables reaction time (2-18 h), temperature (20-70 °C), pH (4.0-9.0), NADPH (1.17-5.32 g/L), and enzyme concentration (2-6 %) on the yield of xylitol. Fractional factorial design was followed to identify the key process factors. The screening design identified that time, temperature, and pH are the most significant factors influencing bioxylitol production among the variables with the values of 12 h, 35 °C, and 7.0, respectively. These conditions led to a xylitol yield of 71 % (w/w). This is the first report on the statistical screening of process variables influencing enzyme-based bioxylitol production from lignocellulosic biomass.
    Matched MeSH terms: Xylose/chemistry*
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links