Displaying all 6 publications

Abstract:
Sort:
  1. Soon G, Pingguan-Murphy B, Akbar SA
    J Mech Behav Biomed Mater, 2017 04;68:26-31.
    PMID: 28135639 DOI: 10.1016/j.jmbbm.2017.01.028
    This study utilizes the technique of self-assembly to fabricate arrays of nanoislands on (001)-oriented yttria-stabilized zirconia single crystal substrates with miscut of 10° toward <110> direction. These self-assembled nanostructures were annealed at 1100°C for 5h upon doping with 10mol% gadolinium-doped ceria (GDC) by powder-suspension based method. X-Ray diffraction result showed that the miscut substrate after doping GDC was in the cubic phase. Energy dispersive X-ray (EDX) illustrates that the nanopatterned material contains all the elements from the GDC source and yttria-stabilized zirconia (YSZ) substrate. It also demonstrates a higher surface roughness and a more hydrophilic surface. The nanostructured materials were subsequently used for an in vitro study using a human fetal osteoblastic cell line (hFOB). An improved spreading, enhanced cell proliferation and up-regulated alkaline phosphatase activity (ALP) were observed on the nanopatterned substrates compared to the control substrates. Calcium deposits, which were stained positively by Alizarin Red S, appeared to be more abundant on the nanopatterned surfaces on day 7. The overall findings suggest that post fabrication treatment with surface modification such as creating a nanostructure (e.g. nanopatterns) can improve biocompatibility.
    Matched MeSH terms: Yttrium/chemistry*
  2. Yahya N, Al Habashi RM, Koziol K, Borkowski RD, Akhtar MN, Kashif M, et al.
    J Nanosci Nanotechnol, 2011 Mar;11(3):2652-6.
    PMID: 21449447
    Aluminum substituted yttrium iron garnet nano particles with compositional variation of Y(3.0-x) A1(x)Fe5O12, where x = 0.0, 0.5, 1.0, 1.5, 2.0, 2.5 and 3.0 were prepared using sol gel technique. The X-ray diffraction results showed that the best garnet phase appeared when the sintering temperature was 800 degrees C. Nano-crystalline particles with high purity and sizes ranging from 20 to 100 nm were obtained. It was found that the aluminum substitution had resulted in a sharp fall of the d-spacing when x = 2, which we speculated is due to the preference of the aluminum atoms to the smaller tetrahedron and octahedron sites instead of the much larger dodecahedron site. High resolution transmission electron microscope (HRTEM) and electron diffraction (ED) patterns showed single crystal nanoparticles were obtained from this method. The magnetic measurement gave moderate values of initial permeability; the highest value of 5.3 was shown by sample Y3Fe5O12 at more than 100 MHz which was attributed to the morphology of the microstructure which appeared to be homogeneous. This had resulted in an easy movement of domain walls. The substitution of aluminum for yttrium is speculated to cause a cubic to rhombodedral structural change and had weakened the super-exchange interactions thus a fall of real permeability was observed. This might have created a strain in the sub-lattices and had subsequently caused a shift of resonance frequencies to more than 1.8 GHz when x > 0.5.
    Matched MeSH terms: Yttrium/chemistry*
  3. Soleimani H, Abbas Z, Yahya N, Shameli K, Soleimani H, Shabanzadeh P
    Int J Mol Sci, 2012;13(7):8540-8.
    PMID: 22942718 DOI: 10.3390/ijms13078540
    The sol-gel method was carried out to synthesize nanosized Yttrium Iron Garnet (YIG). The nanomaterials with ferrite structure were heat-treated at different temperatures from 500 to 1000 °C. The phase identification, morphology and functional groups of the prepared samples were characterized by powder X-ray diffraction (PXRD), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR), respectively. The YIG ferrite nanopowder was composited with polyvinylidene fluoride (PVDF) by a solution casting method. The magnitudes of reflection and transmission coefficients of PVDF/YIG containing 6, 10 and 13% YIG, respectively, were measured using rectangular waveguide in conjunction with a microwave vector network analyzer (VNA) in X-band frequencies. The results indicate that the presence of YIG in polymer composites causes an increase in reflection coefficient and decrease in transmission coefficient of the polymer.
    Matched MeSH terms: Yttrium/chemistry*
  4. Kusrini E, Usman A, Sani FA, Wilson LD, Abdullah MAA
    Environ Monit Assess, 2019 Jul 10;191(8):488.
    PMID: 31292792 DOI: 10.1007/s10661-019-7634-6
    This paper presents the adsorption capacity of a biosorbent derived from the inner part of durian (Durio zibethinus) rinds, which are a low-cost and abundant agro-waste material. The durian rind sorbent has been successfully utilized to remove lanthanum (La) and yttrium (Y) ions from their binary aqueous solution. The effects of several adsorption parameters including contact time, pH, concentrations of La and Y, and temperature on the removal of La and Y ions were investigated. The adsorption isotherm and kinetics of the metal ions were also evaluated in detail. Both La and Y ions were efficiently adsorbed by the biosorbent with optimum adsorption capacity as high as 71 mg La and 35 mg Y per gram biosorbent, respectively. The simultaneous adsorption of La and Y ions follows Langmuir isotherm model, due to the favorable chelation and strong chemical interactions between the functional groups on the surface of the biosorbent and the metal ions. The addition of oxygen content after adsorption offers an interpretation that the rare-earth metal ions are chelated and incorporated most probably in the form of metal oxides. With such high adsorption capacity of La and Y ions, the durian rind sorbent could potentially be used to treat contaminated wastewater containing La and Y metal ions, as well as for separating and extracting rare-earth metal ions from crude minerals.
    Matched MeSH terms: Yttrium/chemistry*
  5. Nasir N, Yahya N, Kashif M, Daud H, Akhtar MN, Zaid HM, et al.
    J Nanosci Nanotechnol, 2011 Mar;11(3):2551-4.
    PMID: 21449424
    This is our initial response towards preparation of nano-inductors garnet for high operating frequencies strontium iron garnet (Sr3Fe5O12) denoted as SrIG and yttrium iron garnet (Y3Fe5O12) denoted as YIG. The garnet nano crystals were prepared by novel sol-gel technique. The phase and crystal structure of the prepared samples were identified by using X-ray diffraction analysis. SEM images were done to reveal the surface morphology of the samples. Raman spectra was taken for yttrium iron garnet (Y3Fe5O12). The magnetic properties of the samples namely initial permeability (micro), relative loss factor (RLF) and quality factor (Q-Factor) were done by using LCR meter. From the XRD profile, both of the Y3Fe5O12 and Sr3Fe5O12 samples showed single phase garnet and crystallization had completely occurred at 900 degrees C for the SrIG and 950 degrees C for the YIG samples. The YIG sample showed extremely low RLF value (0.0082) and high density 4.623 g/cm3. Interesting however is the high Q factor (20-60) shown by the Sr3Fe5O12 sample from 20-100 MHz. This high performance magnetic property is attributed to the homogenous and cubical-like microstructure. The YIG particles were used as magnetic feeder for EM transmitter. It was observed that YIG magnetic feeder with the EM transmitter gave 39% higher magnetic field than without YIG magnetic feeder.
    Matched MeSH terms: Yttrium/chemistry*
  6. Hanasil NS, Raja Ibrahim RK, Duralim M, Sapingi HHJ, Mahdi MA
    Appl Spectrosc, 2020 Dec;74(12):1452-1462.
    PMID: 32166979 DOI: 10.1177/0003702820915532
    In this work, principal component analysis (PCA) was utilized to analyze laser-induced breakdown spectroscopy (LIBS) signals of the extracted chicken fat, lamb fat, beef fat, and lard froze using two different freezing methods. The frozen samples were ablated using a neodymium-doped yttrium aluminum garnet (Nd:YAG) laser with a wavelength of 1064 nm, 170 mJ pulse energy, and 6 ns pulse duration to produce plasma on target surfaces. The samples were ablated using 30-60 shots of the laser beam at different spots. Stronger LIBS signals from the extracted chicken fat and lamb fat were obtained with liquid nitrogen (LN2) method. However, LIBS signals obtained from the freezer freezing method were found to be stronger for extracted beef fat and lard. The PCA was then used to visualize the LIBS spectra of extracted animal fats into a score plot. Data points of each extracted animal fat were divided into three groups representing LIBS spectra collected at the early, middle, and end part of the ablation process. The score plot revealed that the data points of the three groups of frozen extracted animal fats using the LN2 method were more closely clustered than those frozen in the freezer. Good discrimination with 97% of the variance was achieved between the extracted chicken fat, lamb fat, beef fat, and lard using the LN2 method in the three-dimensional score plot. LIBS signals of the extracted animal fats produced from the LN2 method were found to be more stable than those from the freezer method.
    Matched MeSH terms: Yttrium/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links