Affiliations 

  • 1 School of Engineering and Physical Sciences, Heriot-Watt University Malaysia, Jalan Venna P5/2, Precinct 5, 62200, Putrajaya, Malaysia
  • 2 Multidisciplinary Platform of Advanced Engineering, Chemical Engineering Discipline, School of Engineering, Monash University, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
  • 3 Multidisciplinary Platform of Advanced Engineering, Chemical Engineering Discipline, School of Engineering, Monash University, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia. tan.llinglling@monash.edu
PMID: 35088270 DOI: 10.1007/s11356-021-18253-0

Abstract

Dye wastewater has raised a prevalent environmental concern due to its ability to prevent the penetration of sunlight through water, thereby causing a disruption to the aquatic ecosystem. Carbon quantum dots (CQDs) are particularly sought after for their highly tailorable photoelectrochemical and optical properties. Simultaneously, graphitic carbon nitride (g-C3N4) has gained widespread attention due to its suitable band gap energy as well as excellent chemical and thermal stabilities. Herein, a novel boron-doped CQD (BCQD)-hybridized g-C3N4 homojunction (CN) nanocomposite was fabricated via a facile hydrothermal route. The optimal photocatalyst sample, 1-BCQD/CN (with a 1:3 mass ratio of boron to CQD) accomplished a Rhodamine B (RhB, 10 mg/L) degradation efficiency of 96.8% within 4 h under an 18 W LED light irradiation. The kinetic rate constant of 1.39 × 10-2 min-1 achieved by the optimum sample was found to be 3.6- and 2.8-folds higher than that of pristine CN and un-doped CQD/CN, respectively. The surface morphology, crystalline structure, chemical composition and optical properties of photocatalyst samples were characterized via TEM, FESEM-EDX, XRD, FTIR, UV-Vis DRS and FL spectrometer. Based on the scavenging tests, it was revealed that the photogenerated holes (h+), superoxide anions (∙O2-) and hydroxyl radicals (∙OH) were the primary reactive species responsible for the photodegradation process. Overall, the highly efficient 1-BCQD/CN composite with excellent photocatalytic activity could provide a cost-effective and robust means to address the increasing concerns over global environmental pollution.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

Similar publications