Affiliations 

  • 1 Chemical Engineering Discipline, School of Engineering, Monash University, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
  • 2 Chemical Engineering Discipline, School of Engineering, Monash University, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia; Undergraduate Research Opportunities Program (UROP), School of Engineering, Monash University, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
  • 3 DTU Bioengineering, Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, 2800 Kgs. Lyngby, Denmark
  • 4 Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, 43000, Kajang, Selangor Darul Ehsan, Malaysia; Centre for Photonics and Advanced Materials Research, Universiti Tunku Abdul Rahman, 43000, Kajang, Selangor, Malaysia
  • 5 School of Computing, Engineering & Design Technologies, Teesside University, Middlesbrough, Tees Valley, TS1 3BX, United Kingdom
  • 6 Center for Catalysis and Separation (CeCaS), Department of Chemical Engineering, College of Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
  • 7 Chemical Engineering Discipline, School of Engineering, Monash University, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia; Monash-Industry Palm Oil Education and Research Platform (MIPO), School of Engineering, Monash University, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia. Electronic address: tayeong@hotmail.com
J Environ Manage, 2022 Apr 01;307:114385.
PMID: 35104699 DOI: 10.1016/j.jenvman.2021.114385

Abstract

The high dependence on crude oil for energy utilization leads to a necessity of finding alternative sustainable resources. Solvents are often employed in valorizing the biomass into bioproducts and other value-added chemicals during treatment stages. Unfortunately, despite the effectiveness of conventional solvents, hindrances such as expensive solvents, unfavourable environmental ramifications, and complicated downstream separation systems often occur. Therefore, the scientific community has been actively investigating more cost-effective, environmentally friendly alternatives and possess the excellent dissolving capability for biomass processing. Generally, 'green' solvents are attractive due to their low toxicity, economic value, and biodegradability. Nonetheless, green solvents are not without disadvantages due to their complicated product recovery, recyclability, and high operational cost. This review summarizes and evaluates the recent contributions, including potential advantages, challenges, and drawbacks of green solvents, namely ionic liquids, deep eutectic solvents, water, biomass-derived solvents and carbon dioxide in transforming the lignocellulosic biomass into high-value products. Moreover, research opportunities for future developments and potential upscale implementation of green solvents are also critically discussed.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.