Displaying publications 1 - 20 of 519 in total

  1. Yusof R, Abdulmalek E, Sirat K, Rahman MB
    Molecules, 2014 Jun 13;19(6):8011-26.
    PMID: 24932572 DOI: 10.3390/molecules19068011
    Density, viscosity and ionic conductivity data sets of deep eutectic solvents (DESs) formed by tetrabutylammonium bromide (TBABr) paired with ethlyene glycol, 1,3-propanediol, 1,5-pentanediol and glycerol hydrogen bond donors (HBDs) are reported. The properties of DES were measured at temperatures between 303 K and 333 K for HBD percentages of 66.7% to 90%. The effects of HBDs under different temperature and percentages are systematically analyzed. As expected, the measured density and viscosity of the studied DESs decreased with an increase in temperature, while ionic conductivity increases with temperature. In general, DESs made of TBABr and glycerol showed the highest density and viscosity and the lowest ionic conductivity when compared to other DESs. The presence of an extra hydroxyl group on glycerol in a DES affected the properties of the DES.
    Matched MeSH terms: Solvents/chemistry*
  2. Abdullah Z, Tahir NM, Abas MR, Aiyub Z, Low BK
    Molecules, 2004 Jun 30;9(7):520-6.
    PMID: 18007451
    The reactions of 2-chloropyrimidine with methylamine, ethylamine and piperidine gave the corresponding 2-N-methylamino-, 2-N-ethylamino- and 2N- piperidinopyrimidines, respectively. The fluorescence properties of these alkylamino derivatives in chloroform, ethyl acetate, carbon tetrachloride, acetone, ether, ethanol and methanol were studied. All the alkylamino derivatives showed the highest fluorescence intensity in polar protic solvents; thus 2-N-methylaminopyrimidine (highest fluorescence intensity at 377 nm when excited at 282 nm) and 2-N-ethylaminopyrimidine (highest fluorescence intensity at 375 nm, when excited at 286 nm) showed the highest fluorescence in methanol. In ethanol, 2-N-piperidinopyrimidine showed a fluorescence peak at 403 nm when excited at 360 nm and in chloroform it fluoresced at 392 nm when excited at 356 nm.
    Matched MeSH terms: Solvents/chemistry
  3. Mbous YP, Hayyan M, Hayyan A, Wong WF, Hashim MA, Looi CY
    Biotechnol Adv, 2017 Mar-Apr;35(2):105-134.
    PMID: 27923764 DOI: 10.1016/j.biotechadv.2016.11.006
    Deep eutectic solvents (DESs) have been touted recently as potential alternatives to ionic liquids (ILs). Although they possess core characteristics that are similar to those of ILs (e.g., low volatility, non-flammability, low melting points, low vapor pressure, dipolar nature, chemical and thermal stability, high solubility, and tuneability), DESs are superior in terms of the availability of raw materials, the ease of storage and synthesis, and the low cost of their starting materials. As such, they have become the subject of intensive research in various sectors, notably the chemical, electrochemical, and biological sectors. To date, the applications of DESs have shown great promise, especially in the medical and biotechnological fields. In spite of these various achievements, the safety concern for these mixtures must be sufficiently addressed. Indeed, in order to exploit the vast array of opportunities that DESs offer to the biological industry, first, they must be established as safe mixtures. Hence, the biotechnological applications of DESs only can be implemented if they are proven to have negligible or low toxicity profiles. This review is the first of its kind, and it discusses two current aspects of DES-based research. First, it describes the properties of these mixtures with ample focus on their toxicity profiles. Second, it provides an overview of the breakthroughs that have occurred and the foreseeable prospects of the use of DESs in various biotechnological and biological applications.
    Matched MeSH terms: Solvents*
  4. Tan YT, Chua ASM, Ngoh GC
    Bioresour Technol, 2020 Feb;297:122522.
    PMID: 31818720 DOI: 10.1016/j.biortech.2019.122522
    Since the introduction of deep eutectic solvent (DES) in biomass processing field, the efficiency of DES in lignocellulosic biopolymer model compounds' (cellulose, hemicellulose and lignin) solubilisation and conversion was widely recognized. Nevertheless, DES's potential for biorefinery application can be reflected more accurately through their performance in raw lignocellulosic biomass processing rather than model compound conversion. Therefore, this review examines the studies on raw lignocellulosic biomass fractionation using DES and the subsequent conversion of DES-fractionated products into bio-based products. The review stresses on three key parts: performance of varying types of DESs and pretreatment schemes for biopolymer fractionation, properties and conversion of fractionated saccharides as well as DES-extracted lignin. The prospects and challenges of DES implementation in biomass processing will also be discussed. This review provides a front-to-end view on the DES's performance, starting from pretreatment to DES-fractionated products conversion, which would be helpful in devising a comprehensive biomass utilization process.
    Matched MeSH terms: Solvents
  5. Tang PL, Hong WL, Yue CS, Harun S
    Bioresour Technol, 2020 Oct;314:123723.
    PMID: 32599527 DOI: 10.1016/j.biortech.2020.123723
    Pretreatment is an essential upstream process to deconstruct oil palm empty fruit bunch fiber (OPEFBF) prior to sugars production. This study aimed to investigate the efficiency of OPEFBF pretreatment using palm oil mill effluent (POME) as solvent. The effect of alkali catalyst (5%w/w NaOH and ammonia), temperature (90,120,135 °C) and time (60,120,180 min) on the efficiency of pretreatment (OPEFBF-to-solvent ratio of 1:25) was also investigated. The results indicated that POME-pretreatment (135 °C, 180 min) enhanced glucose yield by only ~56%. Glucose production was increased about 5.8-fold to 495.3 ± 5.9 mg g-1 OPEFBF when NaOH was added in POME-pretreatment (Na-P). The xylose production from OPEFBF was increased about 3.7-fold after ammonia-catalyzed POME-pretreatment. About 12.1 ± 0.2 g L-1 of ethanol was produced from Na-P-hydrolysate at molar conversion of 59.4 ± 1.4%. This research provides new insight into the use of POME as a cost-effective pretreatment solvent of OPEFBF to reduce upstream process cost by cutting down water usage.
    Matched MeSH terms: Solvents
  6. Bahadori L, Chakrabarti MH, Manan NS, Hashim MA, Mjalli FS, AlNashef IM, et al.
    PLoS One, 2015;10(12):e0144235.
    PMID: 26642045 DOI: 10.1371/journal.pone.0144235
    The temperature dependence of the density, dynamic viscosity and ionic conductivity of several deep eutectic solvents (DESs) containing ammonium-based salts and hydrogen bond donvnors (polyol type) are investigated. The temperature-dependent electrolyte viscosity as a function of molar conductivity is correlated by means of Walden's rule. The oxidation of ferrocene (Fc/Fc+) and reduction of cobaltocenium (Cc+/Cc) at different temperatures are studied by cyclic voltammetry and potential-step chronoamperometry in DESs. For most DESs, chronoamperometric transients are demonstrated to fit an Arrhenius-type relation to give activation energies for the diffusion of redox couples at different temperatures. The temperature dependence of the measured conductivities of DES1 and DES2 are better correlated with the Vogel-Tamman-Fulcher equation. The kinetics of the Fc/Fc+ and Cc+/Cc electrochemical systems have been investigated over a temperature range from 298 to 338 K. The heterogeneous electron transfer rate constant is then calculated at different temperatures by means of a logarithmic analysis. The glycerol-based DES (DES5) appears suitable for further testing in electrochemical energy storage devices.
    Matched MeSH terms: Solvents/chemistry*
  7. Moniruzzaman M, Goto M
    PMID: 29744542 DOI: 10.1007/10_2018_64
    Ionic liquids (ILs), a potentially attractive "green," recyclable alternative to environmentally harmful volatile organic compounds, have been increasingly exploited as solvents and/or cosolvents and/or reagents in a wide range of applications, including pretreatment of lignocellulosic biomass for further processing. The enzymatic delignification of biomass to degrade lignin, a complex aromatic polymer, has received much attention as an environmentally friendly process for clean separation of biopolymers including cellulose and lignin. For this purpose, enzymes are generally isolated from naturally occurring fungi or genetically engineered fungi and used in an aqueous medium. However, enzymatic delignification has been found to be very slow in these conditions, sometimes taking several months for completion. In this chapter, we highlight an environmentally friendly and efficient approach for enzymatic delignification of lignocellulosic biomass using room temperature ionic liquids (ILs) as (co)solvents or/and pretreatment agents. The method comprises pretreatment of lignocellulosic biomass in IL-aqueous systems before enzymatic delignification, with the aim of overcoming the low delignification efficiency associated with low enzyme accessibility to the solid substrate and low substrate and product solubilities in aqueous systems. We believe the processes described here can play an important role in the conversion of lignocellulosic biomass-the most abundant renewable biomaterial in the world-to biomaterials, biopolymers, biofuels, bioplastics, and hydrocarbons. Graphical Abstract.
    Matched MeSH terms: Solvents/chemistry
  8. Ali MS, Said ZS, Rahman RN, Chor AL, Basri M, Salleh AB
    Int J Mol Sci, 2013 Aug 28;14(9):17608-17.
    PMID: 23989606 DOI: 10.3390/ijms140917608
    Seeding is a versatile method for optimizing crystal growth. Coupling this technique with capillary counter diffusion crystallization enhances the size and diffraction quality of the crystals. In this article, crystals for organic solvent-tolerant recombinant elastase strain K were successfully produced through microseeding with capillary counter-diffusion crystallization. This technique improved the nucleation success rate with a low protein concentration (3.00 mg/mL). The crystal was grown in 1 M ammonium phosphate monobasic and 0.1 M sodium citrate tribasic dihydrate pH 5.6. The optimized crystal size was 1 × 0.1 × 0.05 mm³. Elastase strain K successfully diffracted up to 1.39 Å at SPring-8, Japan, using synchrotron radiation for preliminary data diffraction analysis. The space group was determined to be monoclinic space group P12(1)1 with unit cell parameters of a = 38.99 Ǻ, b = 90.173 Å and c = 40.60 Å.
    Matched MeSH terms: Solvents/chemistry*
  9. Bayat S, Tejo BA, Salleh AB, Abdmalek E, Normi YM, Abdul Rahman MB
    Chirality, 2013 Nov;25(11):726-34.
    PMID: 23966316 DOI: 10.1002/chir.22205
    A series of tripeptide organocatalysts containing a secondary amine group and two amino acids with polar side chain units were developed and evaluated in the direct asymmetric intermolecular aldol reaction of 4-nitrobenzaldehyde and cyclohexanone. The effectiveness of short polar peptides as asymmetric catalysts in aldol reactions to attain high yields of enantio- and diastereoselective isomers were investigated. In a comparison, glutamic acid and histidine produced higher % ee and yields when they were applied as the second amino acid in short trimeric peptides. These short polar peptides were found to be efficient organocatalysts for the asymmetric aldol addition reaction in aqueous media.
    Matched MeSH terms: Solvents/chemistry
  10. Juneidi I, Hayyan M, Mohd Ali O
    Environ Sci Pollut Res Int, 2016 Apr;23(8):7648-59.
    PMID: 26743645 DOI: 10.1007/s11356-015-6003-4
    An investigation on the toxicological assessment of 10 choline chloride (ChCl)-based deep eutectic solvents (DESs) towards four fungi strains and Cyprinus carpio fish was conducted. ChCl was combined with materials from different chemical groups such as alcohols, sugars, acids and others to form DESs. The study was carried out on the individual DES components, their aqueous mixture before DES formation and their formed DESs. The agar disc diffusion method was followed to investigate their toxicity on four fungi strains selected as a model of eukaryotic microorganisms (Phanerochaete chrysosporium, Aspergillus niger, Lentinus tigrinus and Candida cylindracea). Among these DESs, ChCl:ZnCl2 exhibited the highest inhibition zone diameter towards the tested fungi growth in vitro, followed by the acidic group (malonic acid and p-toluenesulfonic acid). Another study was conducted to test the acute toxicity and determine the lethal concentration at 50 % (LC50) of the same DESs on C. carpio fish. The inhibition range and LC50 of DESs were found to be different from their individual components. DESs were found to be less toxic than their mixture or individual components. The LC50 of ChCl:MADES is much higher than that of ChCl:MAMix. Moreover, the DESs acidic group showed a lower inhibition zone on fungi growth. Thus, DESs should be considered as new components with different physicochemical properties and toxicological profiles, and not merely compositions of compounds.
    Matched MeSH terms: Solvents/toxicity*
  11. Zolkiflee NF, Affandi MMRMM, Majeed ABA
    Eur J Pharm Sci, 2020 Jan 01;141:105111.
    PMID: 31629916 DOI: 10.1016/j.ejps.2019.105111
    Lovastatin (LVS) is an effective therapeutic and prophylactic agent in several cardiovascular disorders. However, it has low bioavailability. This study investigated solute-solvent and solute-cosolute interactions and assessed thermodynamic parameters that contributed to LVS solubility enhancement in the presence of arginine (ARG) as a hydrotropic agent. The electrolytic conductance of LVS-ARG binary system was measured at temperatures from 298.15 K to 313.15 K. Conductometric parameters such as limiting molar conductance was evaluated. Additionally, thermodynamic parameters (ΔG0, ΔH0, ΔS0 and ES) involved in the association process of the solute in the aqueous solution of ARG solution were determined systematically. Solubility markedly improved 43-fold in the LVS-ARG complex compared to LVS alone. The analysed data from values of molar conductance and activation energy suggested favourable solubilisation, with a stronger solute-solvent interaction between LVS-ARG in water at higher temperatures. ARG and LVS complexation caused by strong molecular interactions was confirmed by spectral results. Hence, the addition of ARG as a co-solute was proven to enhance LVS solubility in water. The obtained data will ultimately enable the development of desired highly soluble, more efficient and safer LVS preparations.
    Matched MeSH terms: Solvents/chemistry*
  12. Tan YT, Ngoh GC, Chua ASM
    Bioresour Technol, 2019 Jun;281:359-366.
    PMID: 30831515 DOI: 10.1016/j.biortech.2019.02.010
    In this study, acidic deep eutectic solvents (DES) synthesized from various organic carboxylic acid hydrogen bond donors were applied to lignocellulosic oil palm empty fruit bunch (EFB) pretreatment. The influence of functional group types on acid and their molar ratios with hydrogen bond acceptor on lignin extraction were evaluated. The result showed presence of hydroxyl group and short alkyl chain enhanced biomass fractionation and lignin extraction. Choline chloride:lactic acid (CC-LA) with the ratio of 1:15 and choline chloride:formic acid (CC-FA) with 1:2 ratio extracted more than 60 wt% of lignin. CC-LA DES-extracted lignin (DEEL) exhibited comparable reactivity with technical and commercial lignin based on its phenolic hydroxyl content (3.33-3.72 mmol/glignin). Also, the DES-pretreated EFB comprised of enriched glucan content after biopolymer fractionation. Both DES-pretreated EFB and DEEL can be potential feedstock for subsequent conversion processes. This study presented DES as an effective and facile pretreatment method for reactive lignin extraction.
    Matched MeSH terms: Solvents/chemistry
  13. Halimah M, Ismail BS, Nashriyah M, Maznah Z
    Bull Environ Contam Toxicol, 2016 Jan;96(1):120-4.
    PMID: 26546229 DOI: 10.1007/s00128-015-1685-3
    The mobility of (14)C-chlorpyrifos using soil TLC was investigated in this study. It was found that chlorpyrifos was not mobile in clay, clay loam and peat soil. The mobility of (14)C-chlorpyrifos and non-labelled chlorpyrifos was also tested with silica gel TLC using three types of developing solvent hexane (100%), hexane:ethyl acetate (95:5, v/v); and hexane:ethyl acetate (98:2, v/v). The study showed that both the (14)C-labelled and non-labelled chlorpyrifos have the same Retardation Factor (Rf) for different developing solvent systems. From the soil column study on mobility of chlorpyrifos, it was observed that no chlorpyrifos residue was found below 5 cm depth in three types of soil at simulation rainfall of 20, 50 and 100 mm. Therefore, the soil column and TLC studies have shown similar findings in the mobility of chlorpyrifos.
    Matched MeSH terms: Solvents
  14. Khan MN, Ariffin A
    Org Biomol Chem, 2003 Apr 21;1(8):1404-8.
    PMID: 12929671
    The rate of formation and disappearance of phthalic anhydride (PAn) intermediate in the aqueous cleavage of N-methoxyphthalamic acid (NMPA) under acidic pH was studied spectrophotometrically in mixed CH3CN-H2O solvents. The rate of formation of PAn from NMPA is almost independent of the change in acetonitrile content from 20 to 70% v/v in mixed aqueous solvents. The rate constants for the formation of PAn from NMPA are approximately 10-fold smaller than the corresponding rate constants for the formation of PAn from o-carboxybenzohydroxamic acid (OCBA). These observations are ascribed to the consequence of the occurrence of slightly different mechanisms in these reactions.
    Matched MeSH terms: Solvents
  15. Shanmuga Sundara Raj S, Razak IA, Fun HK, Zhao PS, Jian F, Yang X, et al.
    Acta Crystallogr C, 2000 Apr 15;56(Pt 4):E130-1.
    PMID: 15263175
    In the crystal of the title complex, [Co(C(9)H(6)NO)(3)].C(2)H(5)OH, the central Co atom has a distorted octahedral coordination comprised of three N atoms and three O atoms from the three 8-quinolinolato ligands. The three Co-O bond distances are in the range 1.887 (2)-1.910 (2) A, while the three Co-N bond distances range from 1.919 (2) to 1.934 (2) A. The solvent ethanol molecule forms an intermolecular O-H.O hydrogen bonding with a quinolinolato ligand.
    Matched MeSH terms: Solvents
  16. Abdullah, Z., Halim, Z.I.A., Bakar, M.A.A., Idris, A.M.
    ASM Science Journal, 2009;3(1):39-44.
    3-Nitro-2-phenoxypyridine and 3-nitro-2-(4-methyl)phenoxypyridine were obtained when 2-chloro-3-nitropyridine was treated with phenol and p-cresol, respectively. Fluorescence studies were carried out in various solvents, in capped and uncapped conditions and for differing concentrations. Both 3-nitro-2-phenoxypyridine and 3-nitro-2-(4-methyl)phenoxypyridine were fluorescent compounds but 3-Nitro-2-(4-methyl)phenoxypyridine was more fluorescent than 3-nitro-2-phenoxypyridine in all the solvents used. The fluorescence intensity decreased with concentration and time.
    Matched MeSH terms: Solvents
  17. Ariffin, A., Khan, M.N., Sim, Y.L.
    ASM Science Journal, 2008;2(1):83-92.
    The rate of aqueous cleavage of N-(2’-hydroxyphenyl)phthalimide (A), monitored at 320 nm, 1.0  10–3 M NaOH, 35ºC and within CH3CN content range 1% – 80% v/v in mixed aqueous solvents, follows the reaction scheme: A + HO-/H2O ➝ B + HO-/H2O ➝ P1 + P2 where B, P1 and P2 represent N-(2’-hydroxyphenyl)phthalamic acid, phthalic acid and 2-hydroxyaniline, respectively. The values of k1 and k2 at different content of CH3CN have been calculated from a kinetic equation based upon a reaction scheme with two irreversible pseudo-first-order consecutive reaction paths. The values of k1/k2 are > 104 within CH3CN content range 1% – 80% v/v in mixed aqueous solvents. The intermediate hydrolysis product (B) exists in 72% dianionic, 27.9% monoanionic and 0.1% nonionic form under the present experimental conditions. Both dianionic and monoanionic forms of B are non-reactive while the nonionic form of B is reactive towards hydrolysis under such conditions.
    Matched MeSH terms: Solvents
  18. Wong, B.Y., Tan, C.P., Ho, C.W.
    The objective of this study was to evaluate the effects of solid-to-solvent ratio (1:5. 1:10, 1:15 and 1:20) on the extraction of phenolic compounds (TPC and TFC) and antioxidant capacity (ABTS and DPPH radical scavenging capacity) of P. niruri. Solid-to-solvent ratio showed a significant effect for both phenolic compounds (TPC and TFC) and antioxidant capacity (ABTS and DPPH radical scavenging capacity) with 1:20 was the condition for extracting the highest of phenolic compounds (TPC and TFC) with a value of 5788.7 mg GAE/100 g DW and 1906.5 mg CE/100 g DW, respectively and exhibited high antioxidant capacities (ABTS and DPPH radical scavenging capacities) with a value of 0.820 mM and 1.598 mM, respectively among the four levels studied. TPC was positively and significantly correlated with ABTS and DPPH (r=0.999 and r=0.999) under the effects of solid-to-solvent ratio as compared to TFC, positively and strongly correlated (r=0.865 and r=0.868) with ABTS and DPPH.
    Matched MeSH terms: Solvents
  19. Abdulkarim, S.M., Lai, O.M., Muhammad, S.K.S., Long, K., Ghazali, H.M.
    Solvent-extracted Moringa oleifera seed oil was transesterified using immobilized lipase (Lipozyme IM 60) (Novozymes Bagsvaerd Denmark) at 1% (w/w) concentration, shaken at 60oC and 200 rpm for up to 24h. After transesterification, the oil was fractionated with acetone at -18oC and without acetone at 10oC to obtain two fractions, stearin and olein fractions. Incubation of the transesterified oil at 10oC for 24 h resulted in the formation of fat crystals, which settled at the bottom of the flask in sample transesterified for 24 h, while the control (0 h) sample became rather viscous with fat crystals in suspension. Transesterification resulted in a change in the triacylglycerol (TAG) profile of the oil, which in turn affected its solid fat content (SFC) and thermal behavior. The SFC value at 0oC after 24 h of reaction was 10.35% and significantly (P
    Matched MeSH terms: Solvents
  20. Agus Salim M.B., Malina, O., Hisanaga, N., Hirata M , Zainul Abidin
    Exposure to organic solvent during work activities has been known to be associated with significant clinical conditions such as peripheral neuropathy and neurobehavioral changes. Three reported cases of peripheral neuropathy most likely due to exposure to chronic organic solvent were reported recently in Bentong Malaysia. These cases showed a compatible clinical history, occupational history, examination and neurological study that link with peripheral neuropathy due to organic solvent poisoning. Proper education and training with review of engineering control measures are among preventive and corrective measures recommended. More comprehensive study in order to establish significant causal-effect relationship as documented evidence is recommended.
    Matched MeSH terms: Solvents
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links