Affiliations 

  • 1 Institute of Chemical & Environmental Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahimyar Khan, 64200, Pakistan
  • 2 College of Natural and Health Sciences, Zayed University, P.O. Box 144534, Abu Dhabi, United Arab Emirates. Electronic address: Jibran.Iqbal@zu.ac.ae
  • 3 Chemical Engineering Department, Universiti Teknologi PETRONAS, Malaysia
  • 4 Institute of Physics, Khwaja Fareed University of Engineering and Information Technology, Rahimyar Khan, 64200, Pakistan
  • 5 Pakistan Council of Scientific and Industrial Research (PCSIR), Lahore, Pakistan
  • 6 Institute of Chemical Engineering & Technology, University of the Punjab, Lahore, Pakistan
  • 7 Faculty of Maritime Studies, Universiti Malaysia Terengganu, Terengganu, Malaysia. Electronic address: lfchuah@umt.edu.my
  • 8 Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, 54000, Pakistan. Electronic address: awaisbokhari@cuilahore.edu.pk
  • 9 Department of Petroleum Engineering, School of Engineering, Asia Pacific University of Technology and Innovation, 57000, Kuala Lumpur, Malaysia. Electronic address: engr.mubashir37@gmail.com
  • 10 Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, 325035, China; Department of Chemical Engineering, Khalifa University, Shakhbout Bin Sultan St - Zone 1, Abu Dhabi, United Arab Emirates; Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor Darul Ehsan, Malaysia; Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai, 602105, India. Electronic address: pauloke.show@ku.ac.ae
Environ Res, 2023 Apr 01;222:115314.
PMID: 36738770 DOI: 10.1016/j.envres.2023.115314

Abstract

The critical challenge being faced by our current modern society on a global scale is to reduce the surging effects of climate change and global warming, being caused by anthropogenic emissions of CO2 in the environment. Present study reports the surface driven adsorption potential of deep eutectic solvents (DESs) surface functionalized cerium oxide nanoparticles (CeNPs) for low pressure CO2 separation. The phosphonium based DESs were prepared using tetra butyl phosphoniumbromide as hydrogen bond acceptor (HBA) and 6 acids as hydrogen bond donors (HBDs). The as-developed DESs were characterized and employed for the surface functionalization of CeNPs with their subsequent utilization in adsorption-based CO2 adsorption. The synthesis of as-prepared DESs was confirmed through FTIR measurements and absence of precipitates, revealed through visual observations. It was found that DES6 surface functionalized CeNPs demonstrated 27% higher adsorption performance for CO2 capturing. On the contrary, DES3 coated CeNPs exhibited the least adsorption progress for CO2 separation. The higher adsorption performance associated with DES6 coated CeNPs was due to enhanced surface affinity with CO2 molecules that must have facilitated the mass transport characteristics and resulted an enhancement in CO2 adsorption performance. Carboxylic groups could have generated an electric field inside the pores to attract more polarizable adsorbates including CO2, are responsible for the relatively high values of CO2 adsorption. The quadruple movement of the CO2 molecules with the electron-deficient and pluralizable nature led to the enhancement of the interactive forces between the CO2 molecules and the CeNPs decorated with the carboxylic group hydrogen bond donor rich DES. The current findings may disclose the new research horizons and theoretical guidance for reduction in the environmental effects associated with uncontrolled CO2 emission via employing DES surface coated potential CeNPs.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.