Current studies were performed to investigate the phytochemistry, synergistic antibacterial, antioxidant, and hemolytic activities of ethanolic and aqueous extracts of Azadirachta indica (EA and WA) and Cymbopogon citratus (EC and WC) leaves. Fourier transform infrared data verified the existence of alcoholic, carboxylic, aldehydic, phenyl, and bromo moieties in plant leaves. The ethanolic extracts (EA and EC) were significantly richer in phenolics and flavonoids as compared to the aqueous extracts (WA and WC). The ethanolic extract of C. citratus (EC) contained higher concentrations of caffeic acid (1.432 mg/g), synapic acid (6.743 mg/g), and benzoic acid (7.431 mg/g) as compared to all other extracts, whereas chlorogenic acid (0.311 mg/g) was present only in the aqueous extract of A. indica (WA). Food preservative properties of C. citratus can be due to the presence of benzoic acid (7.431 mg/g). -Gas chromatography-mass spectrometry analysis demonstrated the presence of 36 and 23 compounds in A. indica and C. citratus leaves, respectively. Inductively coupled plasma analysis was used to determine the concentration of 26 metals (Al, As, B, Ba, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Mo, Na, Ni, Pb, Sb, Se, Si, Sn, Sr, V, Zn, Zr, Ti); the metal concentrations were higher in aqueous extracts as compared to the ethanolic extracts. The extracts were generally richer in calcium (3000-7858 ppm), potassium (13662-53,750 ppm), and sodium (3181-8445 ppm) and hence can be used in food supplements as a source of these metals. Antioxidant potential (DDPH method) of C. citratus ethanolic extract was the highest (74.50 ± 0.66%), whereas it was the lowest (32.22 ± 0.28%) for the aqueous extract of A. indica. Synergistic inhibition of bacteria (Staphylococcus aureus and Escherichia coli) was observed when the aqueous extracts of both the plants were mixed together in certain ratios (v/v). The highest antibacterial potential was exhibited by the pure extract of C. citratus, which was even higher than that of the standard drug (ciprofloxacin). The plant extracts and their mixtures were more active against S. aureus as compared to E. coli. No toxic hemolytic effects were observed for the investigated extracts indicating their safe medicinal uses for human beings.
* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.