Affiliations 

  • 1 Department of Chemical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia
  • 2 Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Indonesia, Depok 16424, Indonesia
  • 3 School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, Shah Alam 40450, Malaysia
Polymers (Basel), 2022 Nov 07;14(21).
PMID: 36365777 DOI: 10.3390/polym14214787

Abstract

Iron Oxide Nanoparticles (IONPs) have received unprecedented interest in various applications. The main challenges in IONPs are fluid stability due to agglomeration in a saline condition. This paper aims to investigate the colloidal stability of citric acid (CA), sodium dodecyl sulphate (SDS) and polyvinyl alcohol (PVA) under various molar ratios and levels of salinity. Firstly, the IONPs were synthesized using a facile co-precipitation approach. Secondly, the IONPs were coated using a simple dip-coating method by varying the molar ratio of CA, SDS and PVA. Next, the coated IONPs were characterized by using an X-ray Diffractometer (XRD), Fourier transform infrared spectroscopy (FTIR), and a Field Emission Scanning Electron Microscope (FESEM) for the morphological and crystallographic study of coated IONPs. Finally, the coated IONPs were characterized for their zeta potential value and hydrodynamic size using a Zetasizer and their turbidity was measured using a turbidity meter. It was found that at a low salinity level, 0.07 M of CA-IONPs, a high zeta potential value, a smaller hydrodynamic size, and a high turbidity value of -40.9 mV, 192 nm and 159 NTU were observed, respectively. At a high salinity level, 1.0 M SDS-IONPs recorded a high zeta potential value of 23.63 mV, which corresponds to a smaller hydrodynamic size (3955 nm) and high turbidity result (639 NTU). These findings are beneficial for delivering cutting-edge knowledge, especially in enhanced oil recovery (EOR) applications.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.