Displaying all 9 publications

Abstract:
Sort:
  1. Abbasi AZ, Nisar S, Rehman U, Ting DH
    Front Psychol, 2020;11:1831.
    PMID: 32849078 DOI: 10.3389/fpsyg.2020.01831
    This article aims to uncover novel insights into personality factors and consumer video game engagement modeling. This research empirically validates the role of specific HEXACO personality factors that foster consumer engagement (CE) in electronic sports (eSports) users. Using a survey-based approach, we incorporated the HEXACO 60 items and consumer video game engagement scales for data collection. Data were collected from eSports users, with 250 valid responses. WarpPLS 6.0 was used for partial least squares-structural equation modeling analyses comprising measurement and structural model assessment. The results showed that the reflective measurement model is reliable and sound, whereas the second-order formative measurement model also meets the criteria of indicator weights and collinearity values variance inflation factor (VIF). The results based on the structural model indicate that openness to experience, extraversion, agreeableness, and conscientiousness positively predict CE in eSports. This article is first among others that conceptualizes and validates the HEXACO personality traits as a reflective formative model using the hierarchical component model approach. The research model carries the explanatory capacity for CE in eSports concerning personality dimensions as indicated by the HEXACO model. It highlights the potential benefits of such research especially to marketers who could potentially employ personality modeling to develop tailored strategies to increase CE in video games.
  2. Khalil M, Fahmi A, Nizardo NM, Amir Z, Mohamed Jan B
    Langmuir, 2021 Jul 09.
    PMID: 34242029 DOI: 10.1021/acs.langmuir.1c01271
    An investigation on the application of thermosensitive core-shell Fe3O4@PNIPAM nanogels in enhanced oil recovery was successfully performed. Here, the unique core-shell architecture was fabricated by conducting the polymerization at the surface of 3-butenoic acid-functionalized Fe3O4 nanoparticles and characterized using X-ray diffraction (XRD), 1H NMR, vibration sample magnetometer (VSM), and high-resolution transmission electron microscopy (HR-TEM). According to the results, this core-shell structure was beneficial for achieving the desired high viscosity and low nanofluid mobility ratio at high temperatures, which is essential for enhanced oil recovery (EOR) application. The results demonstrated that the nanogels exhibited a unique temperature-dependent flow behavior due to the PNIPAM shell's ability to transform from a hydrated to a dehydrated state above its low critical solution temperature (LCST). At such conditions, the nanogels exhibited a significantly low mobility ratio (M = 0.86), resulting in an even displacement front during EOR and leads to higher oil production. Based on the result obtained from sand pack flooding, about 25.75% of an additional secondary oil recovery could be produced when the nanofluid was injected at a temperature of 45 °C. However, a further increase in the flooding temperature could result in a slight reduction in oil recovery due to the precipitation of some of the severely aggregated nanogels at high temperatures.
  3. Khalil M, Aulia G, Budianto E, Mohamed Jan B, Habib SH, Amir Z, et al.
    ACS Omega, 2019 Dec 17;4(25):21477-21486.
    PMID: 31867543 DOI: 10.1021/acsomega.9b03174
    Superparamagnetic nanoparticles (SPNs) have been considered as one of the most studied nanomaterials for subsurface applications, including in enhanced oil recovery (EOR), due to their unique physicochemical properties. However, a comprehensive understanding of the effect of surface functionalization on the ability of the nanoparticles to improve secondary and tertiary oil recoveries remains unclear. Therefore, investigations on the application of bare and surface-functionalized SPNs in EOR using a sand pack were carried out in this study. Here, the as-prepared SPNs were functionalized using oleic acid (OA) and polyacrylamide (PAM) to obtain several types of nanostructure architectures such as OA-SPN, core-shell SPN@PAM, and SPN-PAM. Based on the result, it is found that both the viscosity and mobility of the nanofluids were significantly affected by not only the concentration of the nanoparticles but also the type and architecture of the surface modifier, which dictated particle hydrophilicity. According to the sand pack tests, the nanofluid containing SPN-PAM was able to recover as much as 19.28% of additional oil in a relatively low concentration (0.9% w/v). The high oil recovery enhancement was presumably due to the ability of suspended SPN-PAM to act as a mobility control and wettability alteration agent and facilitate the formation of a Pickering emulsion and disjoining pressure.
  4. Che Mohamed Hussein SN, Amir Z, Jan BM, Khalil M, Azizi A
    Polymers (Basel), 2022 Nov 07;14(21).
    PMID: 36365777 DOI: 10.3390/polym14214787
    Iron Oxide Nanoparticles (IONPs) have received unprecedented interest in various applications. The main challenges in IONPs are fluid stability due to agglomeration in a saline condition. This paper aims to investigate the colloidal stability of citric acid (CA), sodium dodecyl sulphate (SDS) and polyvinyl alcohol (PVA) under various molar ratios and levels of salinity. Firstly, the IONPs were synthesized using a facile co-precipitation approach. Secondly, the IONPs were coated using a simple dip-coating method by varying the molar ratio of CA, SDS and PVA. Next, the coated IONPs were characterized by using an X-ray Diffractometer (XRD), Fourier transform infrared spectroscopy (FTIR), and a Field Emission Scanning Electron Microscope (FESEM) for the morphological and crystallographic study of coated IONPs. Finally, the coated IONPs were characterized for their zeta potential value and hydrodynamic size using a Zetasizer and their turbidity was measured using a turbidity meter. It was found that at a low salinity level, 0.07 M of CA-IONPs, a high zeta potential value, a smaller hydrodynamic size, and a high turbidity value of -40.9 mV, 192 nm and 159 NTU were observed, respectively. At a high salinity level, 1.0 M SDS-IONPs recorded a high zeta potential value of 23.63 mV, which corresponds to a smaller hydrodynamic size (3955 nm) and high turbidity result (639 NTU). These findings are beneficial for delivering cutting-edge knowledge, especially in enhanced oil recovery (EOR) applications.
  5. Azman DQ, Wan Daud WMA, Abdul Patah MF, Amir Z, Saw PA
    J Environ Manage, 2024 May 01;359:120961.
    PMID: 38696851 DOI: 10.1016/j.jenvman.2024.120961
    Plastic pollution poses a significant environmental threat, particularly to marine ecosystems, as conventional plastics persist without degradation, accumulating plastic waste in landfills and natural environments. A promising alternative to address this issue involves the use of hydrogen donor solvents in plastic liquefaction, offering a dual benefit of waste reduction and the generation of valuable liquid products with diverse industrial applications. This review delves into plastic recycling methods with a specific focus on liquefaction using hydrogen donating solvents as an innovative approach to waste management. Liquefaction, conducted at moderate to high temperatures (280-450 °C) and pressures (7-30 MPa), yields high oil conversion using various solvents. This study examined the performance of hydrogen-donating solvents, including water, alcohols, decalin, and cyclohexane, in enhancing the oil yield while minimising the oxygen content. Supercritical water, recognised for its effective plastic degradation and chemical production capabilities, and alcohols, with their alkylating and hydrogen-donating properties, have emerged as key solvents in plastic liquefaction. The use of hydrogen donor solvents stabilizes the free radicals, enhancing the conversion of plastic waste into valuable products. In addition, this review addresses the economic efficiency of the liquefaction process.
  6. Dehaudt B, Amir Z, Decoeur H, Gibson L, Mendes C, Moore JH, et al.
    J Anim Ecol, 2022 Jan 17.
    PMID: 35038361 DOI: 10.1111/1365-2656.13663
    Habitat loss and degradation can undermine wildlife communities and ecosystem functioning. However, certain generalist wildlife species like mesopredators and omnivores can exploit these disturbed habitats, sometimes leading to population increases (e.g. 'mesopredator release' in degraded areas). Although mesopredator release may cause negative effects on food webs and zoonotic disease management, some disturbance-tolerant species may help perpetuate important ecological interactions, such as seed dispersal. We evaluated the habitat associations of common palm civets Paradoxurus hermaphroditus, which are widespread generalist mesopredators in Southeast Asia. Common palm civets are also high-quality seed dispersers, and potential zoonotic disease hosts. We used published and new camera trapping data to map their probability of presence across Southeast Asia and evaluate regional-scale associations between capture rates and habitat variables such as elevation, ecoregion intactness and Human Footprint Index, among others. We also assessed the influence of habitat variables on their relative abundance at the local scale. At the regional scale, we found that common palm civets showed significant positive associations with landscapes characterized by lower ecoregion intactness, higher Human Footprint Index and lower elevations. At the local scale, their relative abundance showed a significant positive association with higher Human Footprint Index, but only to a certain point, after which it started decreasing. They also favoured lower elevations at the local scale. These multi-scale results indicate that common palm civets' abundance can increase under certain levels of human disturbances, consistent with the 'mesopredator release' hypothesis. This suggests they may be crucial seed dispersers in degraded forest landscapes, especially where more sensitive seed dispersers have disappeared. Our results are also consistent with previous studies reporting that habitat degradation increases populations of potential zoonotic disease hosts, and thus risks of transmission to humans.
  7. Moore JH, Gibson L, Amir Z, Chanthorn W, Ahmad AH, Jansen PA, et al.
    Biol Rev Camb Philos Soc, 2023 Oct;98(5):1829-1844.
    PMID: 37311559 DOI: 10.1111/brv.12985
    In many disturbed terrestrial landscapes, a subset of native generalist vertebrates thrives. The population trends of these disturbance-tolerant species may be driven by multiple factors, including habitat preferences, foraging opportunities (including crop raiding or human refuse), lower mortality when their predators are persecuted (the 'human shield' effect) and reduced competition due to declines of disturbance-sensitive species. A pronounced elevation in the abundance of disturbance-tolerant wildlife can drive numerous cascading impacts on food webs, biodiversity, vegetation structure and people in coupled human-natural systems. There is also concern for increased risk of zoonotic disease transfer to humans and domestic animals from wildlife species with high pathogen loads as their abundance and proximity to humans increases. Here we use field data from 58 landscapes to document a supra-regional phenomenon of the hyperabundance and community dominance of Southeast Asian wild pigs and macaques. These two groups were chosen as prime candidates capable of reaching hyperabundance as they are edge adapted, with gregarious social structure, omnivorous diets, rapid reproduction and high tolerance to human proximity. Compared to intact interior forests, population densities in degraded forests were 148% and 87% higher for wild boar and macaques, respectively. In landscapes with >60% oil palm coverage, wild boar and pig-tailed macaque estimated abundances were 337% and 447% higher than landscapes with <1% oil palm coverage, respectively, suggesting marked demographic benefits accrued by crop raiding on calorie-rich food subsidies. There was extreme community dominance in forest landscapes with >20% oil palm cover where two pig and two macaque species accounted for >80% of independent camera trap detections, leaving <20% for the other 85 mammal species >1 kg considered. Establishing the population trends of pigs and macaques is imperative since they are linked to cascading impacts on the fauna and flora of local forest ecosystems, disease and human health, and economics (i.e., crop losses). The severity of potential negative cascading effects may motivate control efforts to achieve ecosystem integrity, human health and conservation objectives. Our review concludes that the rise of native generalists can be mediated by specific types of degradation, which influences the ecology and conservation of natural areas, creating both positive and detrimental impacts on intact ecosystems and human society.
  8. Mendes CP, Albert WR, Amir Z, Ancrenaz M, Ash E, Azhar B, et al.
    Ecology, 2024 Apr 22.
    PMID: 38650359 DOI: 10.1002/ecy.4299
    Information on tropical Asian vertebrates has traditionally been sparse, particularly when it comes to cryptic species inhabiting the dense forests of the region. Vertebrate populations are declining globally due to land-use change and hunting, the latter frequently referred as "defaunation." This is especially true in tropical Asia where there is extensive land-use change and high human densities. Robust monitoring requires that large volumes of vertebrate population data be made available for use by the scientific and applied communities. Camera traps have emerged as an effective, non-invasive, widespread, and common approach to surveying vertebrates in their natural habitats. However, camera-derived datasets remain scattered across a wide array of sources, including published scientific literature, gray literature, and unpublished works, making it challenging for researchers to harness the full potential of cameras for ecology, conservation, and management. In response, we collated and standardized observations from 239 camera trap studies conducted in tropical Asia. There were 278,260 independent records of 371 distinct species, comprising 232 mammals, 132 birds, and seven reptiles. The total trapping effort accumulated in this data paper consisted of 876,606 trap nights, distributed among Indonesia, Singapore, Malaysia, Bhutan, Thailand, Myanmar, Cambodia, Laos, Vietnam, Nepal, and far eastern India. The relatively standardized deployment methods in the region provide a consistent, reliable, and rich count data set relative to other large-scale pressence-only data sets, such as the Global Biodiversity Information Facility (GBIF) or citizen science repositories (e.g., iNaturalist), and is thus most similar to eBird. To facilitate the use of these data, we also provide mammalian species trait information and 13 environmental covariates calculated at three spatial scales around the camera survey centroids (within 10-, 20-, and 30-km buffers). We will update the dataset to include broader coverage of temperate Asia and add newer surveys and covariates as they become available. This dataset unlocks immense opportunities for single-species ecological or conservation studies as well as applied ecology, community ecology, and macroecology investigations. The data are fully available to the public for utilization and research. Please cite this data paper when utilizing the data.
  9. Burton AC, Beirne C, Gaynor KM, Sun C, Granados A, Allen ML, et al.
    Nat Ecol Evol, 2024 May;8(5):924-935.
    PMID: 38499871 DOI: 10.1038/s41559-024-02363-2
    Wildlife must adapt to human presence to survive in the Anthropocene, so it is critical to understand species responses to humans in different contexts. We used camera trapping as a lens to view mammal responses to changes in human activity during the COVID-19 pandemic. Across 163 species sampled in 102 projects around the world, changes in the amount and timing of animal activity varied widely. Under higher human activity, mammals were less active in undeveloped areas but unexpectedly more active in developed areas while exhibiting greater nocturnality. Carnivores were most sensitive, showing the strongest decreases in activity and greatest increases in nocturnality. Wildlife managers must consider how habituation and uneven sensitivity across species may cause fundamental differences in human-wildlife interactions along gradients of human influence.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links