Affiliations 

  • 1 State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
  • 2 the Bio-ultrastructure Analysis Laboratory of the Key Laboratory of Applied Marine Biotechnology of the Ministry of Education, Ningbo University, Ningbo 315800, China
J Agric Food Chem, 2022 Nov 16;70(45):14468-14479.
PMID: 36322824 DOI: 10.1021/acs.jafc.2c06187

Abstract

2-Phenylethanol (2-PE), a common compound found in plants and microorganisms, exhibits broad-spectrum antifungal activity. Using Botrytis cinerea, we demonstrated that 2-PE suppressed mycelium growth in vitro and in strawberry fruit and reduced natural disease without adverse effects to fruit quality. 2-PE caused structural damage to mycelia, as shown by scanning and transmission electron microscopy. From RNA sequencing analysis we found significantly upregulated genes for enzymatic and nonenzymatic reactive oxygen species (ROS) scavenging systems including sulfur metabolism and glutathione metabolism, indicating that ROS stress was induced by 2-PE. This was consistent with results from assays demonstrating an increase ROS and hydrogen peroxide levels, antioxidant enzyme activities, and malondialdehyde content in treated cells. The upregulation of ATP-binding cassette transporter genes, the downregulation of major facilitator superfamily transporters genes, and the downregulation of ergosterol biosynthesis genes indicated a severe disruption of cell membrane structure and function. This was consistent with results from assays demonstrating compromised membrane integrity and lipid peroxidation. To summarize, 2-PE exposure suppressed B. cinerea growth through ROS stress and cell membrane disruption.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.