Affiliations 

  • 1 Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518060, China
  • 2 Faculty of Computer science, University of Malaya, Malaya
  • 3 School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
  • 4 Data Recovery Key Laboratory of Sichuan Province, College of Mathematics and Information Science, Neijiang Normal University, Neijiang 641100, China
  • 5 School of Biomedical Engineering, Shenzhen University, Shenzhen 518060, China
Math Biosci Eng, 2022 Sep 13;19(12):13276-13293.
PMID: 36654046 DOI: 10.3934/mbe.2022621

Abstract

Brain community detection is an efficient method to represent the communities of brain networks. However, time-variable functions of the brain and the intricate brain community structure impose a great challenge on it. In this paper, a time-sequential graph adversarial learning (TGAL) framework is proposed to detect brain communities and characterize the structure of communities from brain networks. In the framework, a novel time-sequential graph neural network is designed as an encoder to extract efficient graph representations by spatio-temporal attention mechanism. Since it is difficult to capture the community structure, the measurable modularity loss is used to optimize by maximizing the modularity of the community. In addition, the framework employs an adversarial scheme to guide the learning of representation. The effectiveness of our model is shown through experiments on the real-world brain network datasets, and the great performance of brain community detection demonstrates the advantage of the proposed framework.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.