Affiliations 

  • 1 Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China; School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
  • 2 Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China; School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China
  • 3 Department of Process and Food Engineering, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
  • 4 Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China; Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China. Electronic address: kwcheng@szu.edu.cn
Food Chem, 2024 Oct 30;456:139818.
PMID: 38878531 DOI: 10.1016/j.foodchem.2024.139818

Abstract

This study aimed to develop complex coacervates utilizing lactoferrin (LF) and chia seed mucilage (CSM) for promoting intestinal delivery of quercetin (Q) and fortification of set yogurt. Three cross-linkers, including calcium chloride (CC), transglutaminase (TG), and polyphenolic complex (HP), were used to further reinforce the coacervate network. Cross-linked coacervates had higher values of coacervate yield, encapsulation efficiency, and loading capacity. They efficiently preserved Q under gastric condition (⁓87%-99%), with CSM-TG-Q-LF being most effective for intestinal delivery of Q. Moreover, digested pellets of the cross-linked coacervates displayed better antioxidant activity than the uncross-linked coacervates with CSM-TG-Q-LF pellets showing maximum bioactivity. The Q-loaded coacervates demonstrated superior assembly in the yogurt matrix compared to the unencapsulated Q. Moreover, the coacervate systems, especially CSM-TG-Q-LF significantly improved the textural properties of yogurt and the stability of Q in it. Therefore, CSM-TG-LF is a promising carrier to promote intestinal delivery and food application of hydrophobic molecules.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.