Corrosion prevention has been a global phenomenon, particularly in metallic and construction engineering. Most inhibitors are expensive and toxic. Therefore, developing nontoxic and cheap corrosion inhibitors has been a way forward. In this work, L-arginine was successfully grafted on chitosan by the thermal technique using a reflux condenser. This copolymer was characterized by Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and X-ray diffraction (XRD). The corrosion inhibition performance of the composite polymer was tested on mild steel in 0.5M HCl by electrochemical methods. The potentiodynamic polarization (PDP) and electrochemical impedance spectroscopy (EIS) results were consistent. The inhibition efficiency at optimum concentration rose to 91.4%. The quantum chemical calculation parameters show good properties of the material as a corrosion inhibitor. The molecular structure of the inhibitor was subjected to density functional theory (DFT) to understand its theoretical properties, and the results confirmed the inhibition efficiency of the grafted polymer for corrosion prevention.
* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.