Affiliations 

  • 1 School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
  • 2 Department of Food Technology, Faculty of Food Science and Technology, University Putra Malaysia, Serdang 43400, Selangor, Malaysia
  • 3 School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China; China-Singapore International Joint Research Institute, Guangzhou 511363, China
  • 4 School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China
  • 5 School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China; China-Singapore International Joint Research Institute, Guangzhou 511363, China. Electronic address: qiangh@scut.edu.cn
Int J Biol Macromol, 2023 Apr 30;235:123886.
PMID: 36870635 DOI: 10.1016/j.ijbiomac.2023.123886

Abstract

The formation of inclusion complexes (ICs) between V-type starch and flavors is traditionally conducted in an aqueous system. In this study, limonene was solid encapsulated into V6-starch under ambient pressure (AP) and high hydrostatic pressure (HHP). The maximum loading capacity reached 639.0 mg/g after HHP treatment, and the highest encapsulation efficiency was 79.9 %. X-ray Diffraction (XRD) results showed that the ordered structure of V6-starch was ameliorated with limonene, which avoided the reduction of the space between adjacent helices within V6-starch generated by HHP treatment. Notably, HHP treatment may force molecular permeation of limonene from amorphous regions into inter-crystalline amorphous regions and crystalline regions as the Small-angle X-ray scattering (SAXS) patterns indicated, leading to better controlled-release behavior. Thermogravimetry analysis (TGA) revealed that the solid encapsulation of V-type starch improved the thermal stability of limonene. Further, the release kinetics study showed that a complex prepared with a mass ratio of 2:1 under HHP treatment sustainably released limonene over 96 h and exhibited a preferable antimicrobial effect, which could extend the shelf life of strawberries.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.