Affiliations 

  • 1 Centre for Toxicology and Health Risk Studies (CORE), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, ̥Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia. Electronic address: p110106@siswa.ukm.edu.my
  • 2 Department of Biotechnology, Kulliyyah of Science, International Islamic University of Malaysia (IIUM) Kuantan Campus, Jalan Sultan Ahmad Shah, Bandar Indera Mahkota, 25200 Kuantan, Pahang Darul Makmur, Malaysia. Electronic address: hamzahn@live.iium.edu.my
  • 3 Centre for Toxicology and Health Risk Studies (CORE), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, ̥Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia. Electronic address: nurulfarhana@ukm.edu.my
  • 4 Centre for Toxicology and Health Risk Studies (CORE), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, ̥Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia. Electronic address: farahwahida@ukm.edu.my
  • 5 Centre for Toxicology and Health Risk Studies (CORE), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, ̥Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia. Electronic address: asmah0901@ukm.edu.my
Biomed Pharmacother, 2023 May;161:114501.
PMID: 36931027 DOI: 10.1016/j.biopha.2023.114501

Abstract

Lysosome is a primary degradative organelle and is crucial in cellular homeostasis. A reduction in its function due to ageing has been associated with the development of Alzheimer's disease (AD), a common neurodegenerative disorder characterised by the deposition of neurotoxic amyloid plaque in the brain and cerebral vessel walls. The breakdown of the blood-brain barrier (BBB) plays a vital role in the pathogenesis of AD. However, the impact of lysosomal dysfunction on brain endothelial cells, the key component of the BBB, in the disease progression is yet to be fully understood. In this study, human brain endothelial cells (HBEC-5i) were exposed to a lysosomotropic compound, chloroquine (CQ) for 24 h. Cell viability was assessed with the 3-(4,5-dimethylthiazol-2-yl)- 2,5-diphenyltetrazolium bromide (MTT) assay to determine the inhibitory concentration (IC) at IC10 (17.5 µM), IC25 (70.5 µM), and IC50 (125 µM). The morphological changes observed include vacuoles arrested in the cytosols and cell shrinkage that were more prominent at IC25 and IC50. Lysosomal dysfunction was evaluated by measuring the lysosomal-associated membrane protein-1 (LAMP-1) and microtubule-associated protein light chain 3-II (LC3-II) using the capillary-based immunoassay. LC3-II was significantly increased at IC25 and IC50 (p 

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.