Affiliations 

  • 1 Department of Electrical Engineering and Technology, Government College University Faisalabad (GCUF), Punjab, Pakistan
  • 2 Department of Telecommunication Engineering, University of Engineering and Technology, Mardan, Pakistan
  • 3 Department of Electrical and Electronic Engineering Auckland University of Technology, Auckland, New Zealand
  • 4 Department of Electronics and Computer Engineering (FKEKK), Center for Telecommunication Research and Innovation (CeTRI), Universiti Teknikal Malaysia Melaka (UTeM), Durian Tungal, Malaysia
  • 5 Department of Electrical and Communication Engineering, United Arab Emirates University, Abu Dhabi, UAE
PLoS One, 2023;18(4):e0280042.
PMID: 37053176 DOI: 10.1371/journal.pone.0280042

Abstract

Biomedical telemetry relies heavily on implantable antennas. Due to this, we have designed and tested a compact, a circularly polarized, a low-profile biomedical implantable antenna that operate in the 2.45 GHz ISM band. In order to keep the antenna compact, modified co-planar waveguide (CPW) technology is used. Slotted rectangular patch with one 45-degree angle slot and truncated little patch on the left end of the ground plane generate a frequency-range antenna with circular polarization. Using a 0.25-millimeter-thick Roger Duroid-RT5880 substrate with a thickness of εr = 2.2, tanδ = 0.0009 provides flexibility. The volume of the antenna is 21 mm x 13.5 mm x 0.254 mm (0.25λg × 0.16λg × 0.003λg). The antenna covers 2.35-2.55 GHz (200 MHz) in free space and 1.63-1.17 GHz (1.17 GHz) in epidermal tissue. With skin tissue that has more bandwidth, the (x and y)-axis bends of the antenna are also simulated via the simulation. Bended antenna simulations and measurements show excellent agreement. At 2.45 GHz, the skin-like gel had -10dB impedance and 3dB axial ratio (AR) bandwidths of 47.7 and 53.8%, respectively. The ultimate result is that the SAR values are 0.78 W/kg in skin over 1 g of bulk tissue, as determined by simulations. The suggested SAR values are lower than the FCC's maximum allowable limit (FCC). This antenna is small enough to be implanted in the body, making it perfect for biomedical applications.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.