Affiliations 

  • 1 Department of Biology, Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor Darul Ehsan, Malaysia
  • 2 Perdana University Graduate School (PUGSOM), Perdana University, Serdang, Selangor, Malaysia
  • 3 China-ASEAN College of Marine Sciences, Xiamen University Malaysia, Sepang, Selangor, Malaysia
  • 4 Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor Darul Ehsan, Malaysia
  • 5 Department of Wildlife and National Parks (DWNP), Wildlife Genetic Resource Banking Laboratory, Ex-Situ Conservation Division, Peninsular Malaysia, Ministry of Natural Resources and Environment Malaysia (NRE), Kuala Lumpur, Malaysia
  • 6 Department of Biology, Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor Darul Ehsan, Malaysia. geetha@upm.edu.my
Methods Mol Biol, 2023;2649:175-194.
PMID: 37258862 DOI: 10.1007/978-1-0716-3072-3_8

Abstract

The Tapirus indicus, also known as Malayan tapir, has been listed as a rapidly declining animal species in the past decades, along with being declared and categorized as an endangered species by the International Union for Conservation of Nature (IUCN) 2016. This tapir species is geographically distributed across several countries in Southeast Asia such as Peninsular Malaysia, Indonesia (Sumatra), South Thailand, and Myanmar. Amongst these countries, the Peninsula Malaysia forest is recorded to contain the highest number of Malayan tapir population. Unfortunately, in the past decades, the population of Malayan tapirs has declined swiftly due to serious deforestation, habitat fragmentation, and heavy vehicle accidents during road crossings at forest routes. Concerned by this predicament, the Department of Wildlife and National Parks (DWNP) Peninsular Malaysia collaborated with a few local universities to conduct various studies aimed at increasing the population number of tapirs in Malaysia. Several studies were conducted with the aim of enhancing the well-being of tapirs in captivity. Veterinarians face problems when it comes to selecting healthy and suitable tapirs for breeding programs at conservation centers. Conventional molecular methods using high-throughput sequencing provides a solution in determining the health condition of Malayan tapirs using the Next-Generation Sequencing (NGS) technology. Unaware by most, gut microbiome plays an important role in determining the health condition of an organism by various aspects: (1) digestion control; (2) benefiting the immune system; and (3) playing a role as a "second brain." Commensal gut bacterial communities (microbiomes) are predicted to influence organism health and disease. Imbalance of unhealthy and healthy microbes in the gut may contribute to weight gain, high blood sugar, high cholesterol, and other disorders. In infancy, neonatal gut microbiomes are colonized with maternal and environmental flora, and mature toward a stable composition in two to three years. Interactions between the microorganism communities and the host allow for the establishment of microbiological roles. Identifying the core microbiome(s) are essential in the prediction of diseases and changes in environmental behavior of microorganisms. The dataset of 16S rRNA amplicon sequencing of Malayan tapir was deposited in the MG-RAST portal. Parameters such as quality control, taxonomic prediction (unknown and predicted), diversity (rarefaction), and diversity (alpha) were analyzed using sequencing approaches (Amplicon sequencing). Comparisons of parameters, according to the type of sequencing, showed significant differences, except for the prediction variable. In the Amplicon sequencing datasets, the parameters Rarefaction and Unknown had the highest correlation, while Alpha and Predicted had the lowest. Firmicutes, Bacteroidetes, Proteobacteria, Bacilli, and Bacteroidia were the most representative genera in Malayan tapir amplicon sequences, which indicated that most of the tapirs were healthy. However, continuous assessment to maintain the well-being of tapir for long term is still required. This chapter focuses on the introduction of 16S rRNA amplicon metagenomics in analyzing Malayan tapir gut microbiome dataset.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.