Affiliations 

  • 1 Universiti Putra Malaysia, 37449, Institute of Plantation Studies, Laboratory of Sustainable Agronomy and Crop Protection, Serdang, Selangor, Malaysia; dayanachong52@gmail.com
  • 2 Universiti Putra Malaysia, 37449, Serdang, Selangor, Malaysia; waelsoultan1987@gmail.com
  • 3 Universiti Putra Malaysia, 37449, Institute of Plantation Studies, Laboratory of Sustainable Agronomy and Crop Protection , Serdang, Selangor, Malaysia; syazwannurhakim98@gmail.com
  • 4 Universiti Putra Malaysia, 37449, Institute of Plantation Studies, Serdang, Selangor, Malaysia; lihling@upm.edu.my
  • 5 Universiti Putra Malaysia, 37449, Faculty Of Biotechnology And Biomolecular Sciences, Serdang, Selangor, Malaysia; clho@upm.edu.my
  • 6 Universiti Putra Malaysia, 37449, Institute of Plantation Studies, Laboratory of Sustainable Agronomy and Crop Protection, Serdang, Selangor, Malaysia; muiyun@upm.edu.my
Plant Dis, 2023 Sep 14.
PMID: 37709725 DOI: 10.1094/PDIS-04-23-0636-PDN

Abstract

Coconut (Cocos nucifera) is a high economic value cash crop in Malaysia. In December 2021, irregular spots with dotted rust-like appearance were observed mainly on the tip of the leaves of MATAG variety coconut seedlings at the nursery in Perak state. More than 90% of the coconut seedlings surveyed were infected with leaf spot symptoms. These symptoms could bring huge economic losses due to the downgrade value of the seedlings. 15 symptomatic leaves were obtained from the nursery, 10 mm2 of cut leaves were disinfected with 10% sodium hypochlorite for 10 minutes and rinsed with sterile distilled water before plated on potato dextrose agar (PDA). A total of 4 single-spore isolates were obtained and were observed morphologically. The isolates had white cotton-like appearance with undulate edge. Black acervuli were seen after 7 days of incubation at 26 °C. The conidia were fusiform and contained five cells with four septate and three versicolor cells in between the apical and basal cell. The conidia were 17.2 µm long and 5.9 µm wide (n=30). Conidia consisted of two to three apical appendages and one basal appendage. These morphological characters were consistent with the original description of Neopestalotiopsis clavispora (Santos et al., 2019; Abbas et al., 2022). Species identification was done by amplifying internal transcribed spacer (ITS) region using primers ITS 4 and ITS 5 (White et al., 1990) and beta-tubulin (TUB2) using primers Bt2a and Bt2b (Glass & Donaldson et al., 1995) of the representative isolate LKR1, then sequenced. The 488 bp ITS and 409 bp TUB2 sequences were deposited in GenBank under the accession numbers ON844193 and OP004810, respectively. Isolate LKR1 shares 99.8% identity with the ITS sequence (MH860736.1) of the reference pathogenic N. clavispora strain CBS:447.73 and 100% identity with the TUB2 sequence (KM199443.1) of the reference pathogenic N. clavispora strain CBS 447.73. The phylogenetic analysis confirmed that the isolate LKR1 belonged to N. clavispora when a supported clade is formed with 98% and 94% bootstrap support for ITS and TUB2 respectively with other related N. clavispora. Pathogenicity test was conducted by using five replicates of 8 month old seedlings, they were incubated under greenhouse condition and were watered daily. The leaves of the seedlings were injured with sterile needles and were sprayed with conidial suspension (1 x 10^6 conidia/ml). The control plants were also injured but sprayed with sterile distilled water. After a month, signature symptoms of spots on the leaves appear but none on the control seedling. N. clavispora was successfully re-isolated only from the inoculated symptomatic leaves and identified morphologically. No fungus was re-isolated from the control seedlings. The result was consistent even after repeating the test one more time. N. clavispora has been reported causing leaf spot on Macadamia integrifolia (Santos et al., 2019), Phoenix dactylifera L. (Basavand et al., 2020) and Musa acuminata (Qi et al., 2022). N. clavispora has also been reported causing rust-like appearance of leaves on strawberry (Fragaria × ananassa Duch.) (Obregón et al., 2018). To our knowledge, this is the first report of N. clavispora causing leaf spot disease on coconut seedlings in Malaysia. Through the identification of N. clavispora as the causal agent of leaf spot on coconut, this can help coconut growers to tackle the disease problem earlier thus, preventing the disease from spreading until the adult phase.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.