Affiliations 

  • 1 Advanced Lightning Power and Energy Research (ALPER), Department of Electrical and Electronic Engineering, Faculty of Engineering, University Putra Malaysia (UPM), Serdang, Malaysia
PLoS One, 2024;19(2):e0298094.
PMID: 38330067 DOI: 10.1371/journal.pone.0298094

Abstract

Recently, global interest in organizing the functioning of renewable energy resources (RES) through microgrids (MG) has developed, as a unique approach to tackle technical, economic, and environmental difficulties. This study proposes implementing a developed Distributable Resource Management strategy (DRMS) in hybrid Microgrid systems to reduce total net percent cost (TNPC), energy loss (Ploss), and gas emissions (GEM) while taking the cost-benefit index (CBI) and loss of power supply probability (LPSP) as operational constraints. Grey Wolf Optimizer (GWO) was utilized to find the optimal size of the hybrid Microgrid components and calculate the multi-objective function with and without the proposed management method. In addition, a detailed sensitivity analysis of numerous economic and technological parameters was performed to assess system performance. The proposed strategy reduced the system's total net present cost, power loss, and emissions by (1.06%), (8.69%), and (17.19%), respectively compared to normal operation. Firefly Algorithm (FA) and Particle Swarm Optimization (PSO) techniques were used to verify the results. This study gives a more detailed plan for evaluating the effectiveness of hybrid Microgrid systems from a technical, economic, and environmental perspective.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.