COVID-19 is a significant public health problem around the globe, including in Australia. Despite this, Australia's Ministry of Health has expanded COVID-19 control measures widely, logistical trials exist, and the disease burden still needs more clarity. One of the best methods to comprehend the dynamics of disease transmission is by mathematical modeling of COVID-19, which also makes it possible to quantify factors in many places, including Australia. In order to understand the dynamics of COVID-19 in Australia, we examine a mathematical modeling framework for the virus in this study. Australian COVID-19 actual incidence data from January to December 2021 was used to calibrate the model. We also performed a sensitivity analysis of the model parameters and found that the COVID-19 transmission rate was the primary factor in determining the basic reproduction number (R0). Gradually influential intervention policies were established, with accurate effect and coverage regulated with the help of COVID-19 experts in Australia. We simulated data for the period from April 2022 to August 2023. To ascertain which of these outcomes is most effective in lowering the COVID-19 burden, we here assessed the COVID-19 burden (as shown by the number of incident cases and mortality) under a range of intervention scenarios. Regarding the policy of single intervention, the fastest and most efficient way to lower the incidence of COVID-19 is via increasing the first-dose immunization rate, while an improved treatment rate for the afflicted population is also helps to lower mortality in Australia. Furthermore, our results imply that integrating more therapies at the same time increases their efficacy, particularly for mortality, which significantly reduced with a moderate effort, while lowering the number of COVID-19 instances necessitates a major and ongoing commitment.
* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.