Affiliations 

  • 1 National Child Development Research Centre, Universiti Pendidikan Sultan Idris, Perak, Malaysia
  • 2 HQ, Guangxi Suhang Firefighting Technology Co., Ltd., Nanning, Guangxi, China
PeerJ Comput Sci, 2024;10:e1858.
PMID: 38435553 DOI: 10.7717/peerj-cs.1858

Abstract

Managing user bias in large-scale user review data is a significant challenge in optimizing children's book recommendation systems. To tackle this issue, this study introduces a novel hybrid model that combines graph convolutional networks (GCN) based on bipartite graphs and neural matrix factorization (NMF). This model aims to enhance the precision and efficiency of children's book recommendations by accurately capturing user biases. In this model, the complex interactions between users and books are modeled as a bipartite graph, with the users' book ratings serving as the weights of the edges. Through GCN and NMF, we can delve into the structure of the graph and the behavioral patterns of users, more accurately identify and address user biases, and predict their future behaviors. Compared to traditional recommendation systems, our hybrid model excels in handling large-scale user review data. Experimental results confirm that our model has significantly improved in terms of recommendation accuracy and scalability, positively contributing to the advancement of children's book recommendation systems.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.