Affiliations 

  • 1 Laboratories of Pharmacology and Toxicology, Pharmaceutical and Toxicological Analysis Research Team, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, Morocco
  • 2 Applied Phycology-Mycology Group, Applied Botany Laboratory, Department of Biology, Faculty of Sciences, Abdelmalek Essaâdi University, M'Hannech II, 93030 Tetouan, Morocco
  • 3 Microbial Research Group, Research Center for Life Science and Healthcare, China Beacons of Excellence Research and Innovation Institute (CBI), University of Nottingham Ningbo China, Zhejiang, China; Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya, Selangor 47500, Malaysia. Electronic address: Han.Lee@nottingham.edu.cn
  • 4 Laboratory of Human Pathologies Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco
  • 5 Physiology and Biochemistry Laboratory, Department of Biology, Science Faculty, Selcuk University, Konya 42130, Turkey. Electronic address: gokhanzengin@selcuk.edu.tr
Fitoterapia, 2024 May 11.
PMID: 38740345 DOI: 10.1016/j.fitote.2024.106016

Abstract

Over the years, the biological activities of seaweeds could have piqued research interest due to their specific functional phytochemistry, which may not be available in terrestrial plants. Seaweeds produce these compounds to overcome and control stressful biotic and abiotic conditions. Additionally, they are potentially excellent sources of highly useful leads in the development of new drugs. Our study aims to unveil, for the first time, an overview of Halopteris scoparia, a species belonging to the Phaeophyceae class and the Stypocaulacea family, by summarizing all available literature data. In this work, we attempt to shed light on its phytochemistry, nutritional values, pharmacological activities, and industrial uses and applications. To gather information related to H. scoparia, relevant keywords were used to search internet databases including Google Scholar, PubMed, ResearchGate, Web of Science, Algae Database, WoRMS database, and DORIS database. The chemical structures were drawn using Chemdraw and verified using the PubChem database. Chemically, this species contains a wide variety of secondary metabolites, such as terpenoids and phenolic compounds. Additionally, other chemical components with nutraceutical value have been identified, such as carbohydrates, proteins, lipids, pigments, minerals and mycosporine like amino acids. Then, holding several reported pharmacological properties, including antioxidant, anti-inflammatory, cytotoxic, dermoprotective, antidepressive, antibacterial, antibiofilm, antifungal, anti-parasitic activities and acute toxicity. In addition to other their applications such as bioconversion and antifouling activities. To confirm the previous pharmacological properties, more comprehensive and systematic in vivo, preclinical, and clinical studies are needed. Furthermore, research is required to uncover the mechanisms of its active compounds and their potential therapeutic effects in treating other diseases such as atherosclerosis, neurodegenerative diseases, and viral infections.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.