Affiliations 

  • 1 Laboratory of Histology, Embryology, and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat 10100, Morocco; Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco. Electronic address: nasrelomari@gmail.com
  • 2 Geo-Bio-Environment Engineering and Innovation Laboratory, Molecular Engineering, Biotechnology and Innovation Team, Polydisciplinary Faculty of Taroudant, Ibn Zohr University, Agadir 80000, Morocco; Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco. Electronic address: s.bakrim@uiz.ac.ma
  • 3 Substance Abuse and Toxicology Research Center, Jazan University, P.O. Box: 114, Jazan 45142, Saudi Arabia; Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco. Electronic address: akahmed@jazanu.edu.sa
  • 4 Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, P.O. Box 114, 45142, Jazan, Saudi Arabia; Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco. Electronic address: malbratty@jazanu.edu.sa
  • 5 Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia; Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco. Electronic address: anabdrabo@uqu.edu.sa
  • 6 Sunway Microbiomics Centre, School of Medical and Life Sciences, Sunway University, Sunway City 47500, Malaysia; Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Malaysia. Electronic address: learnhanl@sunway.edu.my
  • 7 Faculty of Data Science and Information Technology, INTI International University, Nilai, Malaysia. Electronic address: khangwen.goh@newinti.edu.my
  • 8 School of Medical and Life Sciences, Sunway University, Sunway City 47500, Malaysia. Electronic address: chiaumingl@sunway.edu.my
  • 9 School of Medical and Life Sciences, Sunway University, Sunway City 47500, Malaysia; Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco. Electronic address: a.bouyahya@um5r.ac.ma
Biomed Pharmacother, 2023 Sep;165:115212.
PMID: 37541175 DOI: 10.1016/j.biopha.2023.115212

Abstract

Cancer progression is strongly affected by epigenetic events in addition to genetic modifications. One of the key elements in the epigenetic control of gene expression is histone modification through acetylation, which is regulated by the synergy between histone acetyltransferases (HATs) and histone deacetylases (HDACs). HDACs are thought to offer considerable potential for the development of anticancer medications, particularly when used in conjunction with other anticancer medications and/or radiotherapy. Belinostat (Beleodaq, PXD101) is a pan-HDAC unsaturated hydroxamate inhibitor with a sulfonamide group that has been approved by the U.S. Food and Drug Administration (FDA) for the treatment of refractory or relapsed peripheral T-cell lymphoma (PTCL) and solid malignancies or and other hematological tissues. This drug modifies histones and epigenetic pathways. Because HDAC and HAT imbalance can lead to downregulation of regulatory genes, resulting in tumorigenesis. Inhibition of HDACs by belinostat indirectly promotes anti-cancer therapeutic effect by provoking acetylated histone accumulation, re-establishing normal gene expressions in cancer cells and stimulating other routes such as the immune response, p27 signaling cascades, caspase 3 activation, nuclear protein poly (ADP-ribose) polymerase-1 (PARP-1) degradation, cyclin A (G2/M phase), cyclin E1 (G1/S phase) and other events. In addition, belinostat has already been discovered to increase p21WAF1 in a number of cell lines (melanoma, prostate, breast, lung, colon, and ovary). This cyclin-dependent kinase inhibitor actually has a role in processes that cause cell cycle arrest and apoptosis. Belinostat's clinical effectiveness, comprising Phase I and II studies within the areas of solid and hematological cancers, has been evidenced through several investigative trials that have supported its potential to be a valuable anti-cancer drug. The purpose of this research was to provide insight on the specific molecular processes through which belinostat inhibits HDAC. The ability to investigate new therapeutic options employing targeted therapy and acquire a deeper understanding of cancer cell abnormalities may result from a better understanding of these particular routes.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.