Affiliations 

  • 1 Product Stewardship and Toxicology, Environment, Social Performance & Product Stewardship (ESPPS), Group Health, Safety and Environment (GHSE), Petroliam Nasional Berhad (PETRONAS), Kuala Lumpur, 50088, Malaysia. aedah.abubakar@petronas.com
  • 2 Product Stewardship and Toxicology, Environment, Social Performance & Product Stewardship (ESPPS), Group Health, Safety and Environment (GHSE), Petroliam Nasional Berhad (PETRONAS), Kuala Lumpur, 50088, Malaysia. maihani.ismail@petronas.com
  • 3 Product Stewardship and Toxicology, Environment, Social Performance & Product Stewardship (ESPPS), Group Health, Safety and Environment (GHSE), Petroliam Nasional Berhad (PETRONAS), Kuala Lumpur, 50088, Malaysia
  • 4 Health, Safety and Environment (HSE), KLCC Urusharta, Kuala Lumpur, 50088, Malaysia
  • 5 Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Selangor, 43600 UKM, Malaysia
  • 6 ESPPS, GHSE, PETRONAS, Kuala Lumpur, 50088, Malaysia
Genes Environ, 2024 Jul 09;46(1):15.
PMID: 38982523 DOI: 10.1186/s41021-024-00310-y

Abstract

BACKGROUND: Exposure to chemical mixtures inherent in air pollution, has been shown to be associated with the risk of breast and lung cancers. However, studies on the molecular mechanisms of exposure to a mixture of these pollutants, such as hydrocarbons, in the development of breast and lung cancers are scarce. We utilized in silico toxicogenomic analysis to elucidate the molecular pathways linked to both cancers that are influenced by exposure to a mixture of selected hydrocarbons. The Comparative Toxicogenomics Database and Cytoscape software were used for data mining and visualization.

RESULTS: Twenty-five hydrocarbons, common in air pollution with carcinogenicity classification of 1 A/B or 2 (known/presumed or suspected human carcinogen), were divided into three groups: alkanes and alkenes, halogenated hydrocarbons, and polyaromatic hydrocarbons. The in silico data-mining revealed 87 and 44 genes commonly interacted with most of the investigated hydrocarbons are linked to breast and lung cancer, respectively. The dominant interactions among the common genes are co-expression, physical interaction, genetic interaction, co-localization, and interaction in shared protein domains. Among these genes, only 16 are common in the development of both cancers. Benzo(a)pyrene and tetrachlorodibenzodioxin interacted with all 16 genes. The molecular pathways potentially affected by the investigated hydrocarbons include aryl hydrocarbon receptor, chemical carcinogenesis, ferroptosis, fluid shear stress and atherosclerosis, interleukin 17 signaling pathway, lipid and atherosclerosis, NRF2 pathway, and oxidative stress response.

CONCLUSIONS: Within the inherent limitations of in silico toxicogenomics tools, we elucidated the molecular pathways associated with breast and lung cancer development potentially affected by hydrocarbons mixture. Our findings indicate adaptive responses to oxidative stress and inflammatory damages are instrumental in the development of both cancers. Additionally, ferroptosis-a non-apoptotic programmed cell death driven by lipid peroxidation and iron homeostasis-was identified as a new player in these responses. Finally, AHR potential involvement in modulating IL-8, a critical gene that mediates breast cancer invasion and metastasis to the lungs, was also highlighted. A deeper understanding of the interplay between genes associated with these pathways, and other survival signaling pathways identified in this study, will provide invaluable knowledge in assessing the risk of inhalation exposure to hydrocarbons mixture. The findings offer insights into future in vivo and in vitro laboratory investigations that focus on inhalation exposure to the hydrocarbons mixture.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.