Affiliations 

  • 1 Department of Chemistry, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
  • 2 Unité Mixte Processus Infectieux en Milieu Insulaire Tropical, Université de la Réunion, INSERM U1187, CNRS UMR 9192, IRD UMR 249, Plateforme Technologique CYROI, Sainte Clotilde 94791, France
  • 3 Atta-ur-Rahman Institute for Natural Product Discovery, Level 9 FF3, Universiti Teknologi MARA Puncak Alam Campus, Bandar Puncak Alam 42300, Malaysia
  • 4 Chemistry Division, Centre for Foundation Studies in Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
  • 5 Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017-Center for Infection and Immunity of Lille (CIIL), Lille F-59000, France
  • 6 Institut de Chimie des Substances Naturelles, CNRS, UPR 2301, Université Paris-Saclay, Gif-sur-Yvette 91198, France
J Nat Prod, 2024 Aug 23;87(8):1941-1951.
PMID: 39028935 DOI: 10.1021/acs.jnatprod.4c00342

Abstract

In the search of new inhibitors for human coronavirus (HCoV), we screened extracts of endemic Annonaceae plants on an assay using a cellular model of Huh-7 cells infected with the human alphacoronavirus HCoV-229E. The EtOAc bark extract of the rare Southeast Asian plant Neo-uvaria foetida exhibited inhibition of HCoV-229E and SARS-CoV-2 viruses with IC50 values of 3.8 and 7.8 μg/mL, respectively. Using LC-MS/MS and molecular networking analysis guided isolation, we discovered two new labdane-type diterpenoids, 8-epi-acuminolide (1) and foetidalabdane A (4), and three known labdane diterpenoids, acuminolide (2), 17-O-acetylacuminolide (3), and spiroacuminolide (5). A new norlabdane diterpene, 16-foetinorlabdoic acid (6), was also isolated and identified. Excluding compounds 5 and 6, all other metabolites were active against the virus HCoV-229E. Terpenoids 1 and 4 presented antiviral activity against SARS-CoV-2 with IC50 values of 63.3 and 93.5 μM, respectively, indicating lower potency. Additionally, virological assays demonstrated that compounds 1, 2, and 3 exert antiviral effects against Zika virus by specifically interfering with the late stage of its infectious cycle with IC50 values of 76.0, 31.9, and 14.9 μM, respectively.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.