Affiliations 

  • 1 Department of Pharmaceutical and Toxicological Chemistry named after Arzamastsev, Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; Department of Rural Clinical Sciences, La Trobe University, Edwards Rd, Bendigo 3550, Australia. Electronic address: s.kustrin@latrobe.edu.au
  • 2 School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia
  • 3 School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia; Curtin Medical School, Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, GPO Box U1987 Perth, Western Australia 6845, Australia
  • 4 Department of Pharmaceutical and Toxicological Chemistry named after Arzamastsev, Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
  • 5 Department of Pharmaceutical and Toxicological Chemistry named after Arzamastsev, Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; Department of Rural Clinical Sciences, La Trobe University, Edwards Rd, Bendigo 3550, Australia. Electronic address: d.morton@latrobe.edu.au
J Chromatogr A, 2024 Aug 31;1735:465310.
PMID: 39232418 DOI: 10.1016/j.chroma.2024.465310

Abstract

The goal of preparative chromatography is to isolate suitable amounts of compound(s) at the required purity in the most cost-effective way. This study analyses the power of High-performance thin-layer chromatography (HPTLC) guided preparative flash chromatography to separate and isolate bioactive compounds from an olive flower extract for their further characterisation via spectroscopy. The structure and purity of isolated bioactive compounds were assessed using Fourier-transform infrared (FTIR) and nuclear magnetic resonance (NMR) spectroscopy. Flash chromatography of the olive flower extract successfully isolated pure oleanolic and maslinic acids. Moreover, the flash chromatography of the extract allowed isolation and phytochemical analysis of the most lipophilic fraction of the extract, which was found to contain n-eicosane and n-(Z)-eicos-5-ene, that has not been isolated previously with preparative TLC.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.